Publikation:

ISMI : a classification index for high angular resolution diffusion imaging

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2012

Autor:innen

Röttger, Diana
Dudai, Daniela
Müller, Stefan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

HAYNOR, David R., ed., Sébastien OURSELIN, ed.. Medical Imaging 2012: Image Processing. SPIE, 2012, pp. 83144E. SPIE Proceedings. 8314. Available under: doi: 10.1117/12.911277

Zusammenfassung

Magnetic resonance diffusion imaging provides a unique insight into the white matter architecture of the brain in vivo. Applications include neurosurgical planning and fundamental neuroscience. Contrary to diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) is able to characterize complex intra-voxel diffusion distributions and hence provides more accurate information about the true diffusion profile. Anisotropy indices aim to reduce the information of the diffusion probability function to a meaningful scalar representation that classifies the underlying diffusion and thereby the neuronal fiber configuration within a voxel. These indices can be used to answer clinical questions such as the integrity of certain neuronal pathways. Information about the underlying fiber distribution can be beneficial in tractography approaches, reconstructing neuronal pathways using local diffusion orientations. Therefore, an accurate classification of diffusion profiles is of great interest. However, the differentiation between multiple fiber orientations and isotropic diffusion is still a challenging task. In this work, we introduce ISMI, an index which successfully differentiates isotropic diffusion and single and multiple fiber populations. The classifier is based on the orientation distribution function (ODF) resulting from Q-ball imaging. We compare our results with the well-known general fractional anisotropy (GFA) index using a fiber phantom comprising challenging diffusion profiles such as crossing, fanning and kissing fiber configurations and a human brain dataset considering the centrum semiovale. Additionally, we visualize the results directly on the fibers represented by streamtubes using a heat color map.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

SPIE Medical Imaging, San Diego, California, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690RÖTTGER, Diana, Daniela DUDAI, Dorit MERHOF, Stefan MÜLLER, 2012. ISMI : a classification index for high angular resolution diffusion imaging. SPIE Medical Imaging. San Diego, California, USA. In: HAYNOR, David R., ed., Sébastien OURSELIN, ed.. Medical Imaging 2012: Image Processing. SPIE, 2012, pp. 83144E. SPIE Proceedings. 8314. Available under: doi: 10.1117/12.911277
BibTex
@inproceedings{Rottger2012-02-23class-22429,
  year={2012},
  doi={10.1117/12.911277},
  title={ISMI : a classification index for high angular resolution diffusion imaging},
  number={8314},
  publisher={SPIE},
  series={SPIE Proceedings},
  booktitle={Medical Imaging 2012: Image Processing},
  editor={Haynor, David R. and Ourselin, Sébastien},
  author={Röttger, Diana and Dudai, Daniela and Merhof, Dorit and Müller, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22429">
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-12T15:53:05Z</dcterms:available>
    <dc:contributor>Dudai, Daniela</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22429"/>
    <dc:contributor>Müller, Stefan</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Magnetic resonance diffusion imaging provides a unique insight into the white matter architecture of the brain in vivo. Applications include neurosurgical planning and fundamental neuroscience. Contrary to diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) is able to characterize complex intra-voxel diffusion distributions and hence provides more accurate information about the true diffusion profile. Anisotropy indices aim to reduce the information of the diffusion probability function to a meaningful scalar representation that classifies the underlying diffusion and thereby the neuronal fiber configuration within a voxel. These indices can be used to answer clinical questions such as the integrity of certain neuronal pathways. Information about the underlying fiber distribution can be beneficial in tractography approaches, reconstructing neuronal pathways using local diffusion orientations. Therefore, an accurate classification of diffusion profiles is of great interest. However, the differentiation between multiple fiber orientations and isotropic diffusion is still a challenging task. In this work, we introduce ISMI, an index which successfully differentiates isotropic diffusion and single and multiple fiber populations. The classifier is based on the orientation distribution function (ODF) resulting from Q-ball imaging. We compare our results with the well-known general fractional anisotropy (GFA) index using a fiber phantom comprising challenging diffusion profiles such as crossing, fanning and kissing fiber configurations and a human brain dataset considering the centrum semiovale. Additionally, we visualize the results directly on the fibers represented by streamtubes using a heat color map.</dcterms:abstract>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Dudai, Daniela</dc:creator>
    <dc:creator>Müller, Stefan</dc:creator>
    <dc:creator>Röttger, Diana</dc:creator>
    <dc:creator>Merhof, Dorit</dc:creator>
    <dcterms:issued>2012-02-23</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Röttger, Diana</dc:contributor>
    <dcterms:title>ISMI : a classification index for high angular resolution diffusion imaging</dcterms:title>
    <dc:contributor>Merhof, Dorit</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>Medical imaging 2012: image processing : 6 - 9 February 2012, San Diego, California, United States / sponsored by SPIE. David R. Haynor ..., ed. - Bellingham : SPIE, 2012. - S. 8314 4E - (Proceedings of SPIE ; 8314). - ISBN 978-0-8194-8963-0</dcterms:bibliographicCitation>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-12T15:53:05Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen