Publikation: Constructing Hierarchical Rule Systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Rule systems have failed to attract much interest in large data analysis problems because they tend to be too simplistic to be useful or consist of too many rules for human interpretation. We present a method that constructs a hierarchical rule system, with only a small number of rules at each stage of the hierarchy. Lower levels in this hierarchy focus on outliers or areas of the feature space where only weak evidence for a rule was found in the data. Rules further up, at higher levels of the hierarchy, describe increasingly general and strongly supported aspects of the data. We demonstrate the proposed method s usefulness on several classification benchmark data sets using a fuzzy rule induction process as the underlying learning algorithm. The results demonstrate how the rule hierarchy allows to build much smaller rule systems and how the model especially at higher levels of the hierarchy remains interpretable. The presented method can be applied to a variety of local learning systems in a similar fashion.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GABRIEL, Thomas R., Michael R. BERTHOLD, 2003. Constructing Hierarchical Rule Systems. In: BERTHOLD …, M. R., ed.. Lecture notes in computer science, No 2810. Heidelberg; Berlin: Springer, 2003, pp. 76-87BibTex
@incollection{Gabriel2003Const-5949, year={2003}, title={Constructing Hierarchical Rule Systems}, publisher={Springer}, address={Heidelberg; Berlin}, booktitle={Lecture notes in computer science, No 2810}, pages={76--87}, editor={Berthold …, M. R.}, author={Gabriel, Thomas R. and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5949"> <dcterms:title>Constructing Hierarchical Rule Systems</dcterms:title> <dc:contributor>Gabriel, Thomas R.</dc:contributor> <dcterms:issued>2003</dcterms:issued> <dcterms:abstract xml:lang="eng">Rule systems have failed to attract much interest in large data analysis problems because they tend to be too simplistic to be useful or consist of too many rules for human interpretation. We present a method that constructs a hierarchical rule system, with only a small number of rules at each stage of the hierarchy. Lower levels in this hierarchy focus on outliers or areas of the feature space where only weak evidence for a rule was found in the data. Rules further up, at higher levels of the hierarchy, describe increasingly general and strongly supported aspects of the data. We demonstrate the proposed method s usefulness on several classification benchmark data sets using a fuzzy rule induction process as the underlying learning algorithm. The results demonstrate how the rule hierarchy allows to build much smaller rule systems and how the model especially at higher levels of the hierarchy remains interpretable. The presented method can be applied to a variety of local learning systems in a similar fashion.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5949"/> <dc:creator>Berthold, Michael R.</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5949/1/bearb._GaBe03_hFRL_ida.pdf"/> <dc:format>application/pdf</dc:format> <dc:creator>Gabriel, Thomas R.</dc:creator> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>First publ. in: Lecture notes in computer science , No 2810 / ed. by M.R. Berthold ... Heidelberg; Berlin: Springer, 2003, pp. 76-87</dcterms:bibliographicCitation> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5949/1/bearb._GaBe03_hFRL_ida.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:33Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:01:33Z</dcterms:available> </rdf:Description> </rdf:RDF>