Publikation: Faster Evaluation of Shortest-Path Based Centrality Indices
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Centrality indices are an important tool in network analysis, and many of them are derived from the set of all shortest paths of the underlying graph. The so-called betweenness centrality index is essential for the analysis of social networks, but most costly to compute. Currently, the fastest known algorithms require O(n3) time and O(n2) space, where n is the number of vertices.
Motivated by the fast-growing need to compute centrality indices on large, yet very sparse, networks, new algorithms for betweenness are introduced in this paper. They require O(n+m) space and run in O(n(m + n)) or O(n(m+nlog n)) time on unweighted or weighted graphs, respectively, where m is the number of edges. Since these algorithms simply augment single-source shortest-paths computations, all standard centrality indices based on shortest paths can now be computed uniformly in one framework. Experimental evidence is provided that this substantially increases the range of networks for which centrality analysis is feasible.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BRANDES, Ulrik, 2000. Faster Evaluation of Shortest-Path Based Centrality IndicesBibTex
@unpublished{Brandes2000Faste-6062, year={2000}, title={Faster Evaluation of Shortest-Path Based Centrality Indices}, author={Brandes, Ulrik} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6062"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:05Z</dcterms:available> <dcterms:issued>2000</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6062"/> <dc:language>eng</dc:language> <dcterms:title>Faster Evaluation of Shortest-Path Based Centrality Indices</dcterms:title> <dc:format>application/pdf</dc:format> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Brandes, Ulrik</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:09:05Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6062/1/preprint_120.pdf"/> <dcterms:abstract xml:lang="eng">Centrality indices are an important tool in network analysis, and many of them are derived from the set of all shortest paths of the underlying graph. The so-called betweenness centrality index is essential for the analysis of social networks, but most costly to compute. Currently, the fastest known algorithms require O(n3) time and O(n2) space, where n is the number of vertices.<br /><br />Motivated by the fast-growing need to compute centrality indices on large, yet very sparse, networks, new algorithms for betweenness are introduced in this paper. They require O(n+m) space and run in O(n(m + n)) or O(n(m+nlog n)) time on unweighted or weighted graphs, respectively, where m is the number of edges. Since these algorithms simply augment single-source shortest-paths computations, all standard centrality indices based on shortest paths can now be computed uniformly in one framework. Experimental evidence is provided that this substantially increases the range of networks for which centrality analysis is feasible.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6062/1/preprint_120.pdf"/> <dc:creator>Brandes, Ulrik</dc:creator> </rdf:Description> </rdf:RDF>