Publikation:

Data-Informed Parameter Synthesis for Population Markov Chains

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BORTOLUSSI, Luca, ed., Guido SANGUINETTI, ed.. Computational methods in systems biology : 17th international conference, CMSB 2019, Trieste, Italy, September 18-20, 2019 : proceedings. Cham: Springer, 2019, pp. 383-386. Lecture Notes in Computer Science / Lecture notes in bioinformatics. 11773. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-31303-6. Available under: doi: 10.1007/978-3-030-31304-3_32

Zusammenfassung

Population models are widely used to model different phenomena: animal collectives such as social insects, flocking birds, schooling fish, or humans within societies, as well as molecular species inside a cell, cells forming a tissue. Animal collectives show remarkable self-organisation towards emergent behaviours without centralised control. Quantitative models of the underlying mechanisms can directly serve important societal concerns (for example, prediction of seismic activity [5]), inspire the design of distributed algorithms (for example, ant colony algorithm [1]), or aid robust design and engineering of collective, adaptive systems under given functionality and resources, which is recently gaining attention in vision of smart cities [3, 4]. Quantitative prediction of the behaviour of a population of agents over time and space, each having several behavioural modes, results in a high-dimensional, non-linear, and stochastic system [2]. Hence, computational modelling with population models is challenging, especially when the model parameters are unknown and experiments are expensive.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

17th international conference, CMSB 2019, 18. Sept. 2019 - 20. Sept. 2019, Trieste, Italy
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HAJNAL, Matej, Morgane NOUVIAN, Tatjana PETROV, David SAFRANEK, 2019. Data-Informed Parameter Synthesis for Population Markov Chains. 17th international conference, CMSB 2019. Trieste, Italy, 18. Sept. 2019 - 20. Sept. 2019. In: BORTOLUSSI, Luca, ed., Guido SANGUINETTI, ed.. Computational methods in systems biology : 17th international conference, CMSB 2019, Trieste, Italy, September 18-20, 2019 : proceedings. Cham: Springer, 2019, pp. 383-386. Lecture Notes in Computer Science / Lecture notes in bioinformatics. 11773. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-030-31303-6. Available under: doi: 10.1007/978-3-030-31304-3_32
BibTex
@inproceedings{Hajnal2019-09-17DataI-50675,
  year={2019},
  doi={10.1007/978-3-030-31304-3_32},
  title={Data-Informed Parameter Synthesis for Population Markov Chains},
  number={11773},
  isbn={978-3-030-31303-6},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science / Lecture notes in bioinformatics},
  booktitle={Computational methods in systems biology : 17th international conference, CMSB 2019, Trieste, Italy, September 18-20, 2019 : proceedings},
  pages={383--386},
  editor={Bortolussi, Luca and Sanguinetti, Guido},
  author={Hajnal, Matej and Nouvian, Morgane and Petrov, Tatjana and Safranek, David}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50675">
    <dc:contributor>Hajnal, Matej</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50675"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Petrov, Tatjana</dc:contributor>
    <dc:contributor>Nouvian, Morgane</dc:contributor>
    <dc:creator>Petrov, Tatjana</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Data-Informed Parameter Synthesis for Population Markov Chains</dcterms:title>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hajnal, Matej</dc:creator>
    <dc:language>eng</dc:language>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">Population models are widely used to model different phenomena: animal collectives such as social insects, flocking birds, schooling fish, or humans within societies, as well as molecular species inside a cell, cells forming a tissue. Animal collectives show remarkable self-organisation towards emergent behaviours without centralised control. Quantitative models of the underlying mechanisms can directly serve important societal concerns (for example, prediction of seismic activity [5]), inspire the design of distributed algorithms (for example, ant colony algorithm [1]), or aid robust design and engineering of collective, adaptive systems under given functionality and resources, which is recently gaining attention in vision of smart cities [3, 4]. Quantitative prediction of the behaviour of a population of agents over time and space, each having several behavioural modes, results in a high-dimensional, non-linear, and stochastic system [2]. Hence, computational modelling with population models is challenging, especially when the model parameters are unknown and experiments are expensive.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-03T07:15:02Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43615"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Safranek, David</dc:contributor>
    <dc:creator>Safranek, David</dc:creator>
    <dcterms:issued>2019-09-17</dcterms:issued>
    <dc:creator>Nouvian, Morgane</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-03T07:15:02Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen