Publikation: Multilevel Analysis with Few Clusters : Improving Likelihood-Based Methods to Provide Unbiased Estimates and Accurate Inference
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Quantitative comparative social scientists have long worried about the performance of multilevel models when the number of upper-level units is small. Adding to these concerns, an influential Monte Carlo study by Stegmueller (2013) suggests that standard maximum-likelihood (ML) methods yield biased point estimates and severely anti-conservative inference with few upper-level units. In this article, the authors seek to rectify this negative assessment. First, they show that ML estimators of coefficients are unbiased in linear multilevel models. The apparent bias in coefficient estimates found by Stegmueller can be attributed to Monte Carlo Error and a flaw in the design of his simulation study. Secondly, they demonstrate how inferential problems can be overcome by using restricted ML estimators for variance parameters and a t-distribution with appropriate degrees of freedom for statistical inference. Thus, accurate multilevel analysis is possible within the framework that most practitioners are familiar with, even if there are only a few upper-level units.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
ELFF, Martin, Jan Paul HEISIG, Merlin SCHAEFFER, Susumu SHIKANO, 2021. Multilevel Analysis with Few Clusters : Improving Likelihood-Based Methods to Provide Unbiased Estimates and Accurate Inference. In: British Journal of Political Science. Cambridge University Press. 2021, 51(1), pp. 412-426. ISSN 0007-1234. eISSN 1469-2112. Available under: doi: 10.1017/S0007123419000097BibTex
@article{Elff2021-01Multi-51168, year={2021}, doi={10.1017/S0007123419000097}, title={Multilevel Analysis with Few Clusters : Improving Likelihood-Based Methods to Provide Unbiased Estimates and Accurate Inference}, number={1}, volume={51}, issn={0007-1234}, journal={British Journal of Political Science}, pages={412--426}, author={Elff, Martin and Heisig, Jan Paul and Schaeffer, Merlin and Shikano, Susumu} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51168"> <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Schaeffer, Merlin</dc:creator> <dcterms:abstract xml:lang="eng">Quantitative comparative social scientists have long worried about the performance of multilevel models when the number of upper-level units is small. Adding to these concerns, an influential Monte Carlo study by Stegmueller (2013) suggests that standard maximum-likelihood (ML) methods yield biased point estimates and severely anti-conservative inference with few upper-level units. In this article, the authors seek to rectify this negative assessment. First, they show that ML estimators of coefficients are unbiased in linear multilevel models. The apparent bias in coefficient estimates found by Stegmueller can be attributed to Monte Carlo Error and a flaw in the design of his simulation study. Secondly, they demonstrate how inferential problems can be overcome by using restricted ML estimators for variance parameters and a t-distribution with appropriate degrees of freedom for statistical inference. Thus, accurate multilevel analysis is possible within the framework that most practitioners are familiar with, even if there are only a few upper-level units.</dcterms:abstract> <dc:creator>Heisig, Jan Paul</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-02T09:19:21Z</dcterms:available> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Elff, Martin</dc:creator> <dcterms:title>Multilevel Analysis with Few Clusters : Improving Likelihood-Based Methods to Provide Unbiased Estimates and Accurate Inference</dcterms:title> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/> <dc:contributor>Heisig, Jan Paul</dc:contributor> <dc:contributor>Shikano, Susumu</dc:contributor> <dc:contributor>Schaeffer, Merlin</dc:contributor> <dcterms:issued>2021-01</dcterms:issued> <dc:contributor>Elff, Martin</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51168"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51168/1/Elff_2-1444sl6y7ch828.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51168/1/Elff_2-1444sl6y7ch828.pdf"/> <dc:creator>Shikano, Susumu</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-02T09:19:21Z</dc:date> </rdf:Description> </rdf:RDF>