Publikation:

Multilevel Analysis with Few Clusters : Improving Likelihood-Based Methods to Provide Unbiased Estimates and Accurate Inference

Lade...
Vorschaubild

Dateien

Elff_2-1444sl6y7ch828.pdf
Elff_2-1444sl6y7ch828.pdfGröße: 444.92 KBDownloads: 280

Datum

2021

Autor:innen

Heisig, Jan Paul
Schaeffer, Merlin

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

British Journal of Political Science. Cambridge University Press. 2021, 51(1), pp. 412-426. ISSN 0007-1234. eISSN 1469-2112. Available under: doi: 10.1017/S0007123419000097

Zusammenfassung

Quantitative comparative social scientists have long worried about the performance of multilevel models when the number of upper-level units is small. Adding to these concerns, an influential Monte Carlo study by Stegmueller (2013) suggests that standard maximum-likelihood (ML) methods yield biased point estimates and severely anti-conservative inference with few upper-level units. In this article, the authors seek to rectify this negative assessment. First, they show that ML estimators of coefficients are unbiased in linear multilevel models. The apparent bias in coefficient estimates found by Stegmueller can be attributed to Monte Carlo Error and a flaw in the design of his simulation study. Secondly, they demonstrate how inferential problems can be overcome by using restricted ML estimators for variance parameters and a t-distribution with appropriate degrees of freedom for statistical inference. Thus, accurate multilevel analysis is possible within the framework that most practitioners are familiar with, even if there are only a few upper-level units.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

multilevel analysis; cross-national comparison; comparative politics; methodology; statistical inference; maximum likelihood

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690ELFF, Martin, Jan Paul HEISIG, Merlin SCHAEFFER, Susumu SHIKANO, 2021. Multilevel Analysis with Few Clusters : Improving Likelihood-Based Methods to Provide Unbiased Estimates and Accurate Inference. In: British Journal of Political Science. Cambridge University Press. 2021, 51(1), pp. 412-426. ISSN 0007-1234. eISSN 1469-2112. Available under: doi: 10.1017/S0007123419000097
BibTex
@article{Elff2021-01Multi-51168,
  year={2021},
  doi={10.1017/S0007123419000097},
  title={Multilevel Analysis with Few Clusters : Improving Likelihood-Based Methods to Provide Unbiased Estimates and Accurate Inference},
  number={1},
  volume={51},
  issn={0007-1234},
  journal={British Journal of Political Science},
  pages={412--426},
  author={Elff, Martin and Heisig, Jan Paul and Schaeffer, Merlin and Shikano, Susumu}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51168">
    <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schaeffer, Merlin</dc:creator>
    <dcterms:abstract xml:lang="eng">Quantitative comparative social scientists have long worried about the performance of multilevel models when the number of upper-level units is small. Adding to these concerns, an influential Monte Carlo study by Stegmueller (2013) suggests that standard maximum-likelihood (ML) methods yield biased point estimates and severely anti-conservative inference with few upper-level units. In this article, the authors seek to rectify this negative assessment. First, they show that ML estimators of coefficients are unbiased in linear multilevel models. The apparent bias in coefficient estimates found by Stegmueller can be attributed to Monte Carlo Error and a flaw in the design of his simulation study. Secondly, they demonstrate how inferential problems can be overcome by using restricted ML estimators for variance parameters and a t-distribution with appropriate degrees of freedom for statistical inference. Thus, accurate multilevel analysis is possible within the framework that most practitioners are familiar with, even if there are only a few upper-level units.</dcterms:abstract>
    <dc:creator>Heisig, Jan Paul</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-02T09:19:21Z</dcterms:available>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Elff, Martin</dc:creator>
    <dcterms:title>Multilevel Analysis with Few Clusters : Improving Likelihood-Based Methods to Provide Unbiased Estimates and Accurate Inference</dcterms:title>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/>
    <dc:contributor>Heisig, Jan Paul</dc:contributor>
    <dc:contributor>Shikano, Susumu</dc:contributor>
    <dc:contributor>Schaeffer, Merlin</dc:contributor>
    <dcterms:issued>2021-01</dcterms:issued>
    <dc:contributor>Elff, Martin</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51168"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51168/1/Elff_2-1444sl6y7ch828.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51168/1/Elff_2-1444sl6y7ch828.pdf"/>
    <dc:creator>Shikano, Susumu</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-02T09:19:21Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen