Publikation: Improving 3D similarity search by enhancing and combining 3D descriptors
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Effective content-based retrieval in 3D model databases is an important problem that has attracted much research attention over the last years. Many individual methods proposed to date rely on calculating global 3D model descriptors based on image, surface, volumetric, or structural model properties. Descriptors such as these are then input for determining the degree of similarity between models. Traditionally, the ability of individual descriptors to perform effective 3D search is decided by benchmarking. However, in practice the data set on which 3D retrieval is to be applied may differ from the characteristics of the respective benchmark. Therefore, statically determining the descriptor to use based on a fixed benchmark may lead to suboptimal results. We propose a generic strategy to improve the retrieval effectiveness in 3D retrieval systems consisting of multiple model descriptors. The specific contribution of this paper is two-fold. First, we propose to adaptively combine multiple descriptors by forming weighted descriptor combinations, where the weight of each descriptor is decided at query time. Second, we enhance the set of global model descriptors to be combined by including partial descriptors of the same kind in the combinations. Partial descriptors are obtained by applying a given descriptor extractor on the set of parts of a model, obtained by a simple model partitioning scheme. Thereby, more model information is exposed to the 3D descriptors, leading to a more complete object description. We give a systematic discussion of the descriptor combination space involving static and query-adaptive weighting schemes, and based on descriptors of different type and focus (model global vs. partial). The combination of both global and partial model descriptors is shown to deliver improved retrieval precision, compared to policies using single descriptors or fixed-weight combinations. The resulting scheme is generic and can accommodate a large class of global 3D model descriptors.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUSTOS, Benjamin, Tobias SCHRECK, Michael WALTER, Juan Manuel BARRIOS, Matthias SCHAEFER, Daniel A. KEIM, 2011. Improving 3D similarity search by enhancing and combining 3D descriptors. In: Multimedia Tools and Applications. 2011, 58(1), pp. 81-108. ISSN 1380-7501. Available under: doi: 10.1007/s11042-010-0689-6BibTex
@article{Bustos2011Impro-12642, year={2011}, doi={10.1007/s11042-010-0689-6}, title={Improving 3D similarity search by enhancing and combining 3D descriptors}, number={1}, volume={58}, issn={1380-7501}, journal={Multimedia Tools and Applications}, pages={81--108}, author={Bustos, Benjamin and Schreck, Tobias and Walter, Michael and Barrios, Juan Manuel and Schaefer, Matthias and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/12642"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-12-31T23:25:06Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schaefer, Matthias</dc:contributor> <dc:contributor>Barrios, Juan Manuel</dc:contributor> <dc:contributor>Walter, Michael</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Schaefer, Matthias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Walter, Michael</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Barrios, Juan Manuel</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12642/2/Bustos_Improving.pdf"/> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/12642/2/Bustos_Improving.pdf"/> <dcterms:issued>2011</dcterms:issued> <dcterms:abstract xml:lang="eng">Effective content-based retrieval in 3D model databases is an important problem that has attracted much research attention over the last years. Many individual methods proposed to date rely on calculating global 3D model descriptors based on image, surface, volumetric, or structural model properties. Descriptors such as these are then input for determining the degree of similarity between models. Traditionally, the ability of individual descriptors to perform effective 3D search is decided by benchmarking. However, in practice the data set on which 3D retrieval is to be applied may differ from the characteristics of the respective benchmark. Therefore, statically determining the descriptor to use based on a fixed benchmark may lead to suboptimal results. We propose a generic strategy to improve the retrieval effectiveness in 3D retrieval systems consisting of multiple model descriptors. The specific contribution of this paper is two-fold. First, we propose to adaptively combine multiple descriptors by forming weighted descriptor combinations, where the weight of each descriptor is decided at query time. Second, we enhance the set of global model descriptors to be combined by including partial descriptors of the same kind in the combinations. Partial descriptors are obtained by applying a given descriptor extractor on the set of parts of a model, obtained by a simple model partitioning scheme. Thereby, more model information is exposed to the 3D descriptors, leading to a more complete object description. We give a systematic discussion of the descriptor combination space involving static and query-adaptive weighting schemes, and based on descriptors of different type and focus (model global vs. partial). The combination of both global and partial model descriptors is shown to deliver improved retrieval precision, compared to policies using single descriptors or fixed-weight combinations. The resulting scheme is generic and can accommodate a large class of global 3D model descriptors.</dcterms:abstract> <dcterms:bibliographicCitation>First publ. in: Multimedia Tools and Applications ; 58 (2012), 1. - pp. 81-108</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Improving 3D similarity search by enhancing and combining 3D descriptors</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/12642"/> <dc:creator>Bustos, Benjamin</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Bustos, Benjamin</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-19T09:18:03Z</dc:date> </rdf:Description> </rdf:RDF>