Publikation:

Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility

Lade...
Vorschaubild

Dateien

Luechtefeld_2-149wcgv6cisgi6.pdf
Luechtefeld_2-149wcgv6cisgi6.pdfGröße: 1.45 MBDownloads: 402

Datum

2018

Autor:innen

Luechtefeld, Thomas
Marsh, Dan
Rowlands, Craig

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

European Union (EU): 681002

Projekt

EUToxRisk21
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Toxicological Sciences. 2018, 165(1), pp. 198-212. ISSN 1096-6080. eISSN 1096-0929. Available under: doi: 10.1093/toxsci/kfy152

Zusammenfassung

Earlier we created a chemical hazard database via natural language processing of dossiers submitted to the European Chemical Agency with approximately 10 000 chemicals. We identified repeat OECD guideline tests to establish reproducibility of acute oral and dermal toxicity, eye and skin irritation, mutagenicity and skin sensitization. Based on 350–700+ chemicals each, the probability that an OECD guideline animal test would output the same result in a repeat test was 78%–96% (sensitivity 50%–87%). An expanded database with more than 866 000 chemical properties/hazards was used as training data and to model health hazards and chemical properties. The constructed models automate and extend the read-across method of chemical classification. The novel models called RASARs (read-across structure activity relationship) use binary fingerprints and Jaccard distance to define chemical similarity. A large chemical similarity adjacency matrix is constructed from this similarity metric and is used to derive feature vectors for supervised learning. We show results on 9 health hazards from 2 kinds of RASARs—“Simple” and “Data Fusion”. The “Simple” RASAR seeks to duplicate the traditional read-across method, predicting hazard from chemical analogs with known hazard data. The “Data Fusion” RASAR extends this concept by creating large feature vectors from all available property data rather than only the modeled hazard. Simple RASAR models tested in cross-validation achieve 70%–80% balanced accuracies with constraints on tested compounds. Cross validation of data fusion RASARs show balanced accuracies in the 80%–95% range across 9 health hazards with no constraints on tested compounds.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LUECHTEFELD, Thomas, Dan MARSH, Craig ROWLANDS, Thomas HARTUNG, 2018. Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility. In: Toxicological Sciences. 2018, 165(1), pp. 198-212. ISSN 1096-6080. eISSN 1096-0929. Available under: doi: 10.1093/toxsci/kfy152
BibTex
@article{Luechtefeld2018-09-01Machi-44087,
  year={2018},
  doi={10.1093/toxsci/kfy152},
  title={Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility},
  number={1},
  volume={165},
  issn={1096-6080},
  journal={Toxicological Sciences},
  pages={198--212},
  author={Luechtefeld, Thomas and Marsh, Dan and Rowlands, Craig and Hartung, Thomas}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44087">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Marsh, Dan</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44087"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44087/1/Luechtefeld_2-149wcgv6cisgi6.pdf"/>
    <dc:creator>Hartung, Thomas</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2018-09-01</dcterms:issued>
    <dc:creator>Marsh, Dan</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-29T14:47:25Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-29T14:47:25Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Earlier we created a chemical hazard database via natural language processing of dossiers submitted to the European Chemical Agency with approximately 10 000 chemicals. We identified repeat OECD guideline tests to establish reproducibility of acute oral and dermal toxicity, eye and skin irritation, mutagenicity and skin sensitization. Based on 350–700+ chemicals each, the probability that an OECD guideline animal test would output the same result in a repeat test was 78%–96% (sensitivity 50%–87%). An expanded database with more than 866 000 chemical properties/hazards was used as training data and to model health hazards and chemical properties. The constructed models automate and extend the read-across method of chemical classification. The novel models called RASARs (read-across structure activity relationship) use binary fingerprints and Jaccard distance to define chemical similarity. A large chemical similarity adjacency matrix is constructed from this similarity metric and is used to derive feature vectors for supervised learning. We show results on 9 health hazards from 2 kinds of RASARs—“Simple” and “Data Fusion”. The “Simple” RASAR seeks to duplicate the traditional read-across method, predicting hazard from chemical analogs with known hazard data. The “Data Fusion” RASAR extends this concept by creating large feature vectors from all available property data rather than only the modeled hazard. Simple RASAR models tested in cross-validation achieve 70%–80% balanced accuracies with constraints on tested compounds. Cross validation of data fusion RASARs show balanced accuracies in the 80%–95% range across 9 health hazards with no constraints on tested compounds.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44087/1/Luechtefeld_2-149wcgv6cisgi6.pdf"/>
    <dc:creator>Rowlands, Craig</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/>
    <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights>
    <dcterms:title>Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility</dcterms:title>
    <dc:contributor>Rowlands, Craig</dc:contributor>
    <dc:creator>Luechtefeld, Thomas</dc:creator>
    <dc:contributor>Luechtefeld, Thomas</dc:contributor>
    <dc:contributor>Hartung, Thomas</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen