Publikation: The good, the bad and the ugly : analyzing forecasting behavior within a misclassified quantal response framework
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper presents a new approach of analyzing qualitative forecasting errors made by forecasters in tendency surveys. Based on a quantal response approach with misclassification we are able to define qualitative mispredictions of forecasters in terms of deviations from the qualitative rational expectation forecast and relate them to individual and macro factors driving these mispredictions.
Through the introduction of a dynamic, Markov type misclassification matrix our approach accounts for individual heterogeneity in forecasting behavior. It enables a detailed analysis of individual forecasting decisions allowing for the introduction of individual and economy wide determinants influencing the individual expectation formation process. The model can also be used to test for individual deviations from specific behavioral aspects of expectation formation (adaptive expectations, learning, focalism, etc.) at the macro level.
The model is estimated by maximum likelihood using a logistic generalized ARMA structure for the misclassification matrix based on the Financial Markets Survey of the Centre for European Economic Research (ZEW), a monthly qualitative survey of around 330 financial experts, giving six-month-ahead predictions of major macroeconomic aggregates and financial indicators.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
NOLTE, Ingmar, Sandra NOLTE, Winfried POHLMEIER, 2010. The good, the bad and the ugly : analyzing forecasting behavior within a misclassified quantal response frameworkBibTex
@techreport{Nolte2010analy-16548, year={2010}, title={The good, the bad and the ugly : analyzing forecasting behavior within a misclassified quantal response framework}, author={Nolte, Ingmar and Nolte, Sandra and Pohlmeier, Winfried} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/16548"> <dcterms:issued>2010</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-04T16:00:32Z</dcterms:available> <dcterms:abstract xml:lang="eng">This paper presents a new approach of analyzing qualitative forecasting errors made by forecasters in tendency surveys. Based on a quantal response approach with misclassification we are able to define qualitative mispredictions of forecasters in terms of deviations from the qualitative rational expectation forecast and relate them to individual and macro factors driving these mispredictions.<br /><br />Through the introduction of a dynamic, Markov type misclassification matrix our approach accounts for individual heterogeneity in forecasting behavior. It enables a detailed analysis of individual forecasting decisions allowing for the introduction of individual and economy wide determinants influencing the individual expectation formation process. The model can also be used to test for individual deviations from specific behavioral aspects of expectation formation (adaptive expectations, learning, focalism, etc.) at the macro level.<br /><br />The model is estimated by maximum likelihood using a logistic generalized ARMA structure for the misclassification matrix based on the Financial Markets Survey of the Centre for European Economic Research (ZEW), a monthly qualitative survey of around 330 financial experts, giving six-month-ahead predictions of major macroeconomic aggregates and financial indicators.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:creator>Nolte, Ingmar</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Nolte, Ingmar</dc:contributor> <dc:contributor>Pohlmeier, Winfried</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/16548"/> <dc:creator>Pohlmeier, Winfried</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Nolte, Sandra</dc:creator> <dc:contributor>Nolte, Sandra</dc:contributor> <dcterms:title>The good, the bad and the ugly : analyzing forecasting behavior within a misclassified quantal response framework</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-01-04T16:00:32Z</dc:date> </rdf:Description> </rdf:RDF>