Publikation: Mining of Cell Assay Images Using Active Semi-Supervised-Clustering
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Classifying large datasets without any a-priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a highthroughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. We deal with three major requirements: first, the model should be easy to understand, second it should offer the possibility to be adjusted by a domain expert, and third the interaction with the user should be kept to a minimum. We propose a new active clustering scheme, based on an initial Fuzzy c-means clustering and Learning Vector Quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Furthermore, we introduce a framework for the classification of cell assay images based on this technique. Early experiments show promising results.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CEBRON, Nicolas, Michael R. BERTHOLD, 2005. Mining of Cell Assay Images Using Active Semi-Supervised-Clustering. In: ICDM, pp. 63-69BibTex
@article{Cebron2005Minin-5769, year={2005}, title={Mining of Cell Assay Images Using Active Semi-Supervised-Clustering}, journal={ICDM}, pages={63--69}, author={Cebron, Nicolas and Berthold, Michael R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5769"> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:56Z</dcterms:available> <dc:contributor>Berthold, Michael R.</dc:contributor> <dc:creator>Berthold, Michael R.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2005</dcterms:issued> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5769/1/CeBe05_alvq_icdm.pdf"/> <dc:contributor>Cebron, Nicolas</dc:contributor> <dcterms:abstract xml:lang="eng">Classifying large datasets without any a-priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a highthroughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. We deal with three major requirements: first, the model should be easy to understand, second it should offer the possibility to be adjusted by a domain expert, and third the interaction with the user should be kept to a minimum. We propose a new active clustering scheme, based on an initial Fuzzy c-means clustering and Learning Vector Quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Furthermore, we introduce a framework for the classification of cell assay images based on this technique. Early experiments show promising results.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5769"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:56Z</dc:date> <dcterms:bibliographicCitation>First publ. in: ICDM (2005), pp. 63-69</dcterms:bibliographicCitation> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5769/1/CeBe05_alvq_icdm.pdf"/> <dc:format>application/pdf</dc:format> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:creator>Cebron, Nicolas</dc:creator> <dcterms:title>Mining of Cell Assay Images Using Active Semi-Supervised-Clustering</dcterms:title> </rdf:Description> </rdf:RDF>