Publikation:

Mining of Cell Assay Images Using Active Semi-Supervised-Clustering

Lade...
Vorschaubild

Dateien

CeBe05_alvq_icdm.pdf
CeBe05_alvq_icdm.pdfGröße: 412.34 KBDownloads: 98

Datum

2005

Autor:innen

Cebron, Nicolas

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ICDM, pp. 63-69

Zusammenfassung

Classifying large datasets without any a-priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a highthroughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. We deal with three major requirements: first, the model should be easy to understand, second it should offer the possibility to be adjusted by a domain expert, and third the interaction with the user should be kept to a minimum. We propose a new active clustering scheme, based on an initial Fuzzy c-means clustering and Learning Vector Quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Furthermore, we introduce a framework for the classification of cell assay images based on this technique. Early experiments show promising results.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CEBRON, Nicolas, Michael R. BERTHOLD, 2005. Mining of Cell Assay Images Using Active Semi-Supervised-Clustering. In: ICDM, pp. 63-69
BibTex
@article{Cebron2005Minin-5769,
  year={2005},
  title={Mining of Cell Assay Images Using Active Semi-Supervised-Clustering},
  journal={ICDM},
  pages={63--69},
  author={Cebron, Nicolas and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/5769">
    <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:56Z</dcterms:available>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2005</dcterms:issued>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5769/1/CeBe05_alvq_icdm.pdf"/>
    <dc:contributor>Cebron, Nicolas</dc:contributor>
    <dcterms:abstract xml:lang="eng">Classifying large datasets without any a-priori information poses a problem especially in the field of bioinformatics. In this work, we explore the problem of classifying hundreds of thousands of cell assay images obtained by a highthroughput screening camera. The goal is to label a few selected examples by hand and to automatically label the rest of the images afterwards. We deal with three major requirements: first, the model should be easy to understand, second it should offer the possibility to be adjusted by a domain expert, and third the interaction with the user should be kept to a minimum. We propose a new active clustering scheme, based on an initial Fuzzy c-means clustering and Learning Vector Quantization. This scheme can initially cluster large datasets unsupervised and then allows for adjustment of the classification by the user. Furthermore, we introduce a framework for the classification of cell assay images based on this technique. Early experiments show promising results.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/5769"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T15:59:56Z</dc:date>
    <dcterms:bibliographicCitation>First publ. in: ICDM (2005), pp. 63-69</dcterms:bibliographicCitation>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/5769/1/CeBe05_alvq_icdm.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/>
    <dc:creator>Cebron, Nicolas</dc:creator>
    <dcterms:title>Mining of Cell Assay Images Using Active Semi-Supervised-Clustering</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen