Publikation: Kinetic Equations modelling Wealth Redistribution : a comparison of Approaches
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Kinetic equations modelling the redistribution of wealth in simple market economies is one of the major topics in the field of econophysics. We present a unifying approach to the qualitative study for a large variety of such models, which is based on a moment analysis in the related homogeneous Boltzmann equation, and on the use of suitable metrics for probability measures. In consequence, we are able to classify the most important feature of the steady wealth distribution, namely the fatness of the Pareto tail, and the dynamical stability of the latter in terms of the model parameters. Our results apply e.g. to the market model with risky investments [S. Cordier, L. Pareschi and G. Toscani, J. Stat. Phys. 120, 253 (2005)], and to the model with quenched saving propensities [B.K. Chakrabarti, A. Chatterjee and S.S. Manna, Physica A 335, 155 (2004)]. Also, we present results from numerical experiments that confirm the theoretical predictions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DÜRING, Bertram, Daniel MATTHES, Giuseppe TOSCANI, 2008. Kinetic Equations modelling Wealth Redistribution : a comparison of ApproachesBibTex
@techreport{During2008Kinet-11911, year={2008}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Kinetic Equations modelling Wealth Redistribution : a comparison of Approaches}, number={2008/03}, author={Düring, Bertram and Matthes, Daniel and Toscani, Giuseppe} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/11911"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:03Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:41:03Z</dcterms:available> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/11911"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:issued>2008</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11911/1/cofe_dp08_03.pdf"/> <dc:creator>Düring, Bertram</dc:creator> <dc:creator>Toscani, Giuseppe</dc:creator> <dc:format>application/pdf</dc:format> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11911/1/cofe_dp08_03.pdf"/> <dc:contributor>Düring, Bertram</dc:contributor> <dc:contributor>Toscani, Giuseppe</dc:contributor> <dc:contributor>Matthes, Daniel</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Matthes, Daniel</dc:creator> <dcterms:title>Kinetic Equations modelling Wealth Redistribution : a comparison of Approaches</dcterms:title> <dcterms:abstract xml:lang="eng">Kinetic equations modelling the redistribution of wealth in simple market economies is one of the major topics in the field of econophysics. We present a unifying approach to the qualitative study for a large variety of such models, which is based on a moment analysis in the related homogeneous Boltzmann equation, and on the use of suitable metrics for probability measures. In consequence, we are able to classify the most important feature of the steady wealth distribution, namely the fatness of the Pareto tail, and the dynamical stability of the latter in terms of the model parameters. Our results apply e.g. to the market model with risky investments [S. Cordier, L. Pareschi and G. Toscani, J. Stat. Phys. 120, 253 (2005)], and to the model with quenched saving propensities [B.K. Chakrabarti, A. Chatterjee and S.S. Manna, Physica A 335, 155 (2004)]. Also, we present results from numerical experiments that confirm the theoretical predictions.</dcterms:abstract> </rdf:Description> </rdf:RDF>