Complex 3D Shape Recovery using Hybrid Geometric Shape Features in aHierarchical Shape Segmentation Approach

Lade...
Vorschaubild
Dateien
Saupe_Dietmar2009_a.pdf
Saupe_Dietmar2009_a.pdfGröße: 4.3 MBDownloads: ?
Datum
2009
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. IEEE, 2009, pp. 1662-1669. ISBN 978-1-4244-4442-7. Available under: doi: 10.1109/ICCVW.2009.5457483
Zusammenfassung

We present a novel and reliable approach for complex object acquisition and surface registration using hybrid geometric shape features in a hierarchical 3D shape approximation and segmentation approach. First, instead of relying on one type of scanned data, we propose to use hybrid data provided that it can support both global and local geometric shape features. The scanned low-resolution global data supplies the global shape prior for registering the high-resolution local surface patches. Local surfaces can thus be optimally registered requiring less overlap and reducing uncertainty. Second, we cannot directly register huge volumes of data simultaneously due to the memory bottlenecks. We segment the global low-resolution model into several meaningful sub-shapes extending a hierarchical algorithm. The local surfaces can be registered on the sub-shapes respectively and all sub-shapes can be merged and rendered after registration. To verify the reliability of the approach, various 3D models have been acquired. The experiments show compelling results by reconstructing very detailed models of complex objects. The approach can be applied to practical 3D modeling applications.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, 27. Sept. 2009 - 4. Okt. 2009, Kyoto, Japan
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690ZHENG, Hongwei, Dietmar SAUPE, 2009. Complex 3D Shape Recovery using Hybrid Geometric Shape Features in aHierarchical Shape Segmentation Approach. 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. Kyoto, Japan, 27. Sept. 2009 - 4. Okt. 2009. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops. IEEE, 2009, pp. 1662-1669. ISBN 978-1-4244-4442-7. Available under: doi: 10.1109/ICCVW.2009.5457483
BibTex
@inproceedings{Zheng2009-09Compl-6210,
  year={2009},
  doi={10.1109/ICCVW.2009.5457483},
  title={Complex 3D Shape Recovery using Hybrid Geometric Shape Features in aHierarchical Shape Segmentation Approach},
  isbn={978-1-4244-4442-7},
  publisher={IEEE},
  booktitle={2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops},
  pages={1662--1669},
  author={Zheng, Hongwei and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6210">
    <dcterms:bibliographicCitation>First publ. in: Proceedings / Twelfth IEEE International Conference on Computer Vision : September 27 - October 4, 2009, Kyoto, Japan. Los Alamitos, Calif. [u.a.] : IEEE Computer Society, 2009, pp. 1662 - 1669</dcterms:bibliographicCitation>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We present a novel and reliable approach for complex object acquisition and surface registration using hybrid geometric shape features in a hierarchical 3D shape approximation and segmentation approach. First, instead of relying on one type of scanned data, we propose to use hybrid data provided that it can support both global and local geometric shape features. The scanned low-resolution global data supplies the global shape prior for registering the high-resolution local surface patches. Local surfaces can thus be optimally registered requiring less overlap and reducing uncertainty. Second, we cannot directly register huge volumes of data simultaneously due to the memory bottlenecks. We segment the global low-resolution model into several meaningful sub-shapes extending a hierarchical algorithm. The local surfaces can be registered on the sub-shapes respectively and all sub-shapes can be merged and rendered after registration. To verify the reliability of the approach, various 3D models have been acquired. The experiments show compelling results by reconstructing very detailed models of complex objects. The approach can be applied to practical 3D modeling applications.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:13Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6210/1/Saupe_Dietmar2009_a.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:10:13Z</dcterms:available>
    <dc:contributor>Zheng, Hongwei</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6210/1/Saupe_Dietmar2009_a.pdf"/>
    <dc:creator>Zheng, Hongwei</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2009-09</dcterms:issued>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6210"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Complex 3D Shape Recovery using Hybrid Geometric Shape Features in aHierarchical Shape Segmentation Approach</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen