Publikation:

Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data

Lade...
Vorschaubild

Dateien

keim.pdf
keim.pdfGröße: 8.59 MBDownloads: 526

Datum

2011

Autor:innen

Albuquerque, Georgia
Eisemann, Martin
Theisel, Holger
Magnor, Marcus

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Visualization and Computer Graphics. 2011, 17(5), pp. 584-597. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2010.242

Zusammenfassung

Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis. This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper, we present ranking measures for class-based as well as non-class-based scatterplots and parallel coordinates visualizations. The proposed analysis methods are evaluated on different data sets.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Dimensionality reduction, quality measures, scatterplots, parallel coordinates

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690TATU, Andrada, Georgia ALBUQUERQUE, Martin EISEMANN, Peter BAK, Holger THEISEL, Marcus MAGNOR, Daniel A. KEIM, 2011. Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data. In: IEEE Transactions on Visualization and Computer Graphics. 2011, 17(5), pp. 584-597. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2010.242
BibTex
@article{Tatu2011Autom-13655,
  year={2011},
  doi={10.1109/TVCG.2010.242},
  title={Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data},
  number={5},
  volume={17},
  issn={1077-2626},
  journal={IEEE Transactions on Visualization and Computer Graphics},
  pages={584--597},
  author={Tatu, Andrada and Albuquerque, Georgia and Eisemann, Martin and Bak, Peter and Theisel, Holger and Magnor, Marcus and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/13655">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Bak, Peter</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Tatu, Andrada</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/13655"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-14T12:17:39Z</dcterms:available>
    <dc:creator>Bak, Peter</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Magnor, Marcus</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13655/2/keim.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:bibliographicCitation>First publ. in: IEEE Transactions on Visualization and Computer Graphics ; 17 (2011), 5. - S. 584-597</dcterms:bibliographicCitation>
    <dcterms:issued>2011</dcterms:issued>
    <dc:contributor>Magnor, Marcus</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:title>Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data</dcterms:title>
    <dc:contributor>Eisemann, Martin</dc:contributor>
    <dc:creator>Albuquerque, Georgia</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-14T12:17:39Z</dc:date>
    <dc:creator>Eisemann, Martin</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Theisel, Holger</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Albuquerque, Georgia</dc:contributor>
    <dc:creator>Theisel, Holger</dc:creator>
    <dc:creator>Tatu, Andrada</dc:creator>
    <dcterms:abstract xml:lang="eng">Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis. This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper, we present ranking measures for class-based as well as non-class-based scatterplots and parallel coordinates visualizations. The proposed analysis methods are evaluated on different data sets.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13655/2/keim.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen