Publikation: Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis. This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper, we present ranking measures for class-based as well as non-class-based scatterplots and parallel coordinates visualizations. The proposed analysis methods are evaluated on different data sets.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
TATU, Andrada, Georgia ALBUQUERQUE, Martin EISEMANN, Peter BAK, Holger THEISEL, Marcus MAGNOR, Daniel A. KEIM, 2011. Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data. In: IEEE Transactions on Visualization and Computer Graphics. 2011, 17(5), pp. 584-597. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2010.242BibTex
@article{Tatu2011Autom-13655, year={2011}, doi={10.1109/TVCG.2010.242}, title={Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data}, number={5}, volume={17}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={584--597}, author={Tatu, Andrada and Albuquerque, Georgia and Eisemann, Martin and Bak, Peter and Theisel, Holger and Magnor, Marcus and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/13655"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Bak, Peter</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Tatu, Andrada</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/13655"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-14T12:17:39Z</dcterms:available> <dc:creator>Bak, Peter</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Magnor, Marcus</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13655/2/keim.pdf"/> <dc:rights>terms-of-use</dc:rights> <dcterms:bibliographicCitation>First publ. in: IEEE Transactions on Visualization and Computer Graphics ; 17 (2011), 5. - S. 584-597</dcterms:bibliographicCitation> <dcterms:issued>2011</dcterms:issued> <dc:contributor>Magnor, Marcus</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:title>Automated Analytical Methods to Support Visual Exploration of High-Dimensional Data</dcterms:title> <dc:contributor>Eisemann, Martin</dc:contributor> <dc:creator>Albuquerque, Georgia</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-07-14T12:17:39Z</dc:date> <dc:creator>Eisemann, Martin</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Theisel, Holger</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Albuquerque, Georgia</dc:contributor> <dc:creator>Theisel, Holger</dc:creator> <dc:creator>Tatu, Andrada</dc:creator> <dcterms:abstract xml:lang="eng">Visual exploration of multivariate data typically requires projection onto lower dimensional representations. The number of possible representations grows rapidly with the number of dimensions, and manual exploration quickly becomes ineffective or even unfeasible. This paper proposes automatic analysis methods to extract potentially relevant visual structures from a set of candidate visualizations. Based on features, the visualizations are ranked in accordance with a specified user task. The user is provided with a manageable number of potentially useful candidate visualizations, which can be used as a starting point for interactive data analysis. This can effectively ease the task of finding truly useful visualizations and potentially speed up the data exploration task. In this paper, we present ranking measures for class-based as well as non-class-based scatterplots and parallel coordinates visualizations. The proposed analysis methods are evaluated on different data sets.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/13655/2/keim.pdf"/> </rdf:Description> </rdf:RDF>