Publikation:

Evolution of Diverse Swarm Behaviors with Minimal Surprise

Lade...
Vorschaubild

Dateien

Kaiser_2-158vtp5ud3x3g3.pdf
Kaiser_2-158vtp5ud3x3g3.pdfGröße: 970.96 KBDownloads: 29

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

BONGARD, Josh, ed., Juniper LOVATO, ed., Lisa SOROS, ed. and others. Proceedings of the ALIFE 2020 : The 2020 Conference on Artificial Life. Cambridge, Massachusetts: MIT Press, 2020, pp. 384-392. Available under: doi: 10.1162/isal_a_00266

Zusammenfassung

Complementary to machine learning, controllers for swarm robotics can also be evolved using methods of evolutionary computation. Approaches such as novelty search and MAP-Elites go beyond mere fitness-based optimization by increasing the time spent on exploration. Instead of optimizing a fitness function, selective pressure towards unexplored behavior space is generated by forcing behavioral distance to previously seen behaviors. Ideally, we would like to define a generic behavioral distance function; however, effective distance functions are usually domain specific. Our minimize surprise approach concurrently evolves two artificial neural networks: one for action selection and one as world model. Selective pressure is implemented by rewarding good predictions of the world model. As an effect, the evolutionary dynamics push towards swarm behaviors that are easy to predict, that is, the robots virtually try to minimize surprise in their environment. Here, we compare minimize surprise to novelty search and, as baseline, a genetic algorithm in simulations of swarm robots. We observe a diversity of collective behaviors, such as aggregation, dispersion, clustering, line formation, etc. We find that minimize surprise is competitive to novelty search for the investigated swarm scenario, although it does not require a cleverly crafted domain-specific behavioral distance function.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

ALIFE 2020 : The 2020 Conference on Artificial Life, 13. Juli 2020 - 18. Juli 2020, Montréal, Canada
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KAISER, Tanja Katharina, Heiko HAMANN, 2020. Evolution of Diverse Swarm Behaviors with Minimal Surprise. ALIFE 2020 : The 2020 Conference on Artificial Life. Montréal, Canada, 13. Juli 2020 - 18. Juli 2020. In: BONGARD, Josh, ed., Juniper LOVATO, ed., Lisa SOROS, ed. and others. Proceedings of the ALIFE 2020 : The 2020 Conference on Artificial Life. Cambridge, Massachusetts: MIT Press, 2020, pp. 384-392. Available under: doi: 10.1162/isal_a_00266
BibTex
@inproceedings{Kaiser2020Evolu-59737,
  year={2020},
  doi={10.1162/isal_a_00266},
  title={Evolution of Diverse Swarm Behaviors with Minimal Surprise},
  publisher={MIT Press},
  address={Cambridge, Massachusetts},
  booktitle={Proceedings of the ALIFE 2020 : The 2020 Conference on Artificial Life},
  pages={384--392},
  editor={Bongard, Josh and Lovato, Juniper and Soros, Lisa},
  author={Kaiser, Tanja Katharina and Hamann, Heiko}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59737">
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Evolution of Diverse Swarm Behaviors with Minimal Surprise</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59737/1/Kaiser_2-158vtp5ud3x3g3.pdf"/>
    <dc:contributor>Kaiser, Tanja Katharina</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59737/1/Kaiser_2-158vtp5ud3x3g3.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T14:33:12Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59737"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T14:33:12Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Kaiser, Tanja Katharina</dc:creator>
    <dcterms:abstract xml:lang="eng">Complementary to machine learning, controllers for swarm robotics can also be evolved using methods of evolutionary computation. Approaches such as novelty search and MAP-Elites go beyond mere fitness-based optimization by increasing the time spent on exploration. Instead of optimizing a fitness function, selective pressure towards unexplored behavior space is generated by forcing behavioral distance to previously seen behaviors. Ideally, we would like to define a generic behavioral distance function; however, effective distance functions are usually domain specific. Our minimize surprise approach concurrently evolves two artificial neural networks: one for action selection and one as world model. Selective pressure is implemented by rewarding good predictions of the world model. As an effect, the evolutionary dynamics push towards swarm behaviors that are easy to predict, that is, the robots virtually try to minimize surprise in their environment. Here, we compare minimize surprise to novelty search and, as baseline, a genetic algorithm in simulations of swarm robots. We observe a diversity of collective behaviors, such as aggregation, dispersion, clustering, line formation, etc. We find that minimize surprise is competitive to novelty search for the investigated swarm scenario, although it does not require a cleverly crafted domain-specific behavioral distance function.</dcterms:abstract>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hamann, Heiko</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen