Publikation: Evolution of Diverse Swarm Behaviors with Minimal Surprise
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Complementary to machine learning, controllers for swarm robotics can also be evolved using methods of evolutionary computation. Approaches such as novelty search and MAP-Elites go beyond mere fitness-based optimization by increasing the time spent on exploration. Instead of optimizing a fitness function, selective pressure towards unexplored behavior space is generated by forcing behavioral distance to previously seen behaviors. Ideally, we would like to define a generic behavioral distance function; however, effective distance functions are usually domain specific. Our minimize surprise approach concurrently evolves two artificial neural networks: one for action selection and one as world model. Selective pressure is implemented by rewarding good predictions of the world model. As an effect, the evolutionary dynamics push towards swarm behaviors that are easy to predict, that is, the robots virtually try to minimize surprise in their environment. Here, we compare minimize surprise to novelty search and, as baseline, a genetic algorithm in simulations of swarm robots. We observe a diversity of collective behaviors, such as aggregation, dispersion, clustering, line formation, etc. We find that minimize surprise is competitive to novelty search for the investigated swarm scenario, although it does not require a cleverly crafted domain-specific behavioral distance function.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KAISER, Tanja Katharina, Heiko HAMANN, 2020. Evolution of Diverse Swarm Behaviors with Minimal Surprise. ALIFE 2020 : The 2020 Conference on Artificial Life. Montréal, Canada, 13. Juli 2020 - 18. Juli 2020. In: BONGARD, Josh, ed., Juniper LOVATO, ed., Lisa SOROS, ed. and others. Proceedings of the ALIFE 2020 : The 2020 Conference on Artificial Life. Cambridge, Massachusetts: MIT Press, 2020, pp. 384-392. Available under: doi: 10.1162/isal_a_00266BibTex
@inproceedings{Kaiser2020Evolu-59737, year={2020}, doi={10.1162/isal_a_00266}, title={Evolution of Diverse Swarm Behaviors with Minimal Surprise}, publisher={MIT Press}, address={Cambridge, Massachusetts}, booktitle={Proceedings of the ALIFE 2020 : The 2020 Conference on Artificial Life}, pages={384--392}, editor={Bongard, Josh and Lovato, Juniper and Soros, Lisa}, author={Kaiser, Tanja Katharina and Hamann, Heiko} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59737"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Evolution of Diverse Swarm Behaviors with Minimal Surprise</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59737/1/Kaiser_2-158vtp5ud3x3g3.pdf"/> <dc:contributor>Kaiser, Tanja Katharina</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59737/1/Kaiser_2-158vtp5ud3x3g3.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T14:33:12Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59737"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-16T14:33:12Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:creator>Kaiser, Tanja Katharina</dc:creator> <dcterms:abstract xml:lang="eng">Complementary to machine learning, controllers for swarm robotics can also be evolved using methods of evolutionary computation. Approaches such as novelty search and MAP-Elites go beyond mere fitness-based optimization by increasing the time spent on exploration. Instead of optimizing a fitness function, selective pressure towards unexplored behavior space is generated by forcing behavioral distance to previously seen behaviors. Ideally, we would like to define a generic behavioral distance function; however, effective distance functions are usually domain specific. Our minimize surprise approach concurrently evolves two artificial neural networks: one for action selection and one as world model. Selective pressure is implemented by rewarding good predictions of the world model. As an effect, the evolutionary dynamics push towards swarm behaviors that are easy to predict, that is, the robots virtually try to minimize surprise in their environment. Here, we compare minimize surprise to novelty search and, as baseline, a genetic algorithm in simulations of swarm robots. We observe a diversity of collective behaviors, such as aggregation, dispersion, clustering, line formation, etc. We find that minimize surprise is competitive to novelty search for the investigated swarm scenario, although it does not require a cleverly crafted domain-specific behavioral distance function.</dcterms:abstract> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Hamann, Heiko</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Hamann, Heiko</dc:creator> </rdf:Description> </rdf:RDF>