Publikation: A transcriptome-based classifier to identify developmental toxicants by stem cell testing : design, validation and optimization for histone deacetylase inhibitors
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Test systems to identify developmental toxicants are urgently needed. A combination of human stem cell technology and transcriptome analysis was to provide a proof of concept that toxicants with a related mode of action can be identified and grouped for read-across. We chose a test system of developmental toxicity, related to the generation of neuroectoderm from pluripotent stem cells (UKN1), and exposed cells for 6 days to the histone deacetylase inhibitors (HDACi) valproic acid, trichostatin A, vorinostat, belinostat, panobinostat and entinostat. To provide insight into their toxic action, we identified HDACi consensus genes, assigned them to superordinate biological processes and mapped them to a human transcription factor network constructed from hundreds of transcriptome data sets. We also tested a heterogeneous group of 'mercurials' (methylmercury, thimerosal, mercury(II)chloride, mercury(II)bromide, 4-chloromercuribenzoic acid, phenylmercuric acid). Microarray data were compared at the highest non-cytotoxic concentration for all 12 toxicants. A support vector machine (SVM)-based classifier predicted all HDACi correctly. For validation, the classifier was applied to legacy data sets of HDACi, and for each exposure situation, the SVM predictions correlated with the developmental toxicity. Finally, optimization of the classifier based on 100 probe sets showed that eight genes (F2RL2, TFAP2B, EDNRA, FOXD3, SIX3, MT1E, ETS1 and LHX2) are sufficient to separate HDACi from mercurials. Our data demonstrate how human stem cells and transcriptome analysis can be combined for mechanistic grouping and prediction of toxicants. Extension of this concept to mechanisms beyond HDACi would allow prediction of human developmental toxicity hazard of unknown compounds with the UKN1 test system.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
REMPEL, Eugen, Lisa HOELTING, Tanja WALDMANN, Nina STIEGLER, Stefan SCHILDKNECHT, Marianna GRINBERG, John Antony DAS GASPAR, Vaibhav SHINDE, Regina STÖBER, Rosemarie MARCHAN, Christoph VAN THRIEL, Julia LIEBING, Johannes MEISIG, Nils BLÜTHGEN, Agapios SACHINIDIS, Jörg RAHNENFÜHRER, Jan G. HENGSTLER, Marcel LEIST, 2015. A transcriptome-based classifier to identify developmental toxicants by stem cell testing : design, validation and optimization for histone deacetylase inhibitors. In: Archives of Toxicology. 2015, 89(9), pp. 1599-1618. ISSN 0340-5761. eISSN 1432-0738. Available under: doi: 10.1007/s00204-015-1573-yBibTex
@article{Rempel2015trans-33264, year={2015}, doi={10.1007/s00204-015-1573-y}, title={A transcriptome-based classifier to identify developmental toxicants by stem cell testing : design, validation and optimization for histone deacetylase inhibitors}, number={9}, volume={89}, issn={0340-5761}, journal={Archives of Toxicology}, pages={1599--1618}, author={Rempel, Eugen and Hoelting, Lisa and Waldmann, Tanja and Stiegler, Nina and Schildknecht, Stefan and Grinberg, Marianna and Das Gaspar, John Antony and Shinde, Vaibhav and Stöber, Regina and Marchan, Rosemarie and van Thriel, Christoph and Liebing, Julia and Meisig, Johannes and Blüthgen, Nils and Sachinidis, Agapios and Rahnenführer, Jörg and Hengstler, Jan G. and Leist, Marcel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33264"> <dc:contributor>Stiegler, Nina</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Stiegler, Nina</dc:creator> <dc:creator>van Thriel, Christoph</dc:creator> <dc:contributor>Stöber, Regina</dc:contributor> <dc:contributor>Das Gaspar, John Antony</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Marchan, Rosemarie</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-08T12:01:13Z</dc:date> <dc:contributor>van Thriel, Christoph</dc:contributor> <dc:creator>Blüthgen, Nils</dc:creator> <dc:contributor>Sachinidis, Agapios</dc:contributor> <dc:creator>Stöber, Regina</dc:creator> <dc:creator>Leist, Marcel</dc:creator> <dc:creator>Grinberg, Marianna</dc:creator> <dc:contributor>Shinde, Vaibhav</dc:contributor> <dc:contributor>Hoelting, Lisa</dc:contributor> <dc:contributor>Hengstler, Jan G.</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33264/3/Rempel_0-302746.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33264/3/Rempel_0-302746.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Rahnenführer, Jörg</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Leist, Marcel</dc:contributor> <dc:contributor>Liebing, Julia</dc:contributor> <dc:creator>Rahnenführer, Jörg</dc:creator> <dc:creator>Liebing, Julia</dc:creator> <dc:contributor>Marchan, Rosemarie</dc:contributor> <dc:creator>Rempel, Eugen</dc:creator> <dc:contributor>Rempel, Eugen</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33264"/> <dc:contributor>Grinberg, Marianna</dc:contributor> <dc:creator>Waldmann, Tanja</dc:creator> <dc:creator>Hoelting, Lisa</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:abstract xml:lang="eng">Test systems to identify developmental toxicants are urgently needed. A combination of human stem cell technology and transcriptome analysis was to provide a proof of concept that toxicants with a related mode of action can be identified and grouped for read-across. We chose a test system of developmental toxicity, related to the generation of neuroectoderm from pluripotent stem cells (UKN1), and exposed cells for 6 days to the histone deacetylase inhibitors (HDACi) valproic acid, trichostatin A, vorinostat, belinostat, panobinostat and entinostat. To provide insight into their toxic action, we identified HDACi consensus genes, assigned them to superordinate biological processes and mapped them to a human transcription factor network constructed from hundreds of transcriptome data sets. We also tested a heterogeneous group of 'mercurials' (methylmercury, thimerosal, mercury(II)chloride, mercury(II)bromide, 4-chloromercuribenzoic acid, phenylmercuric acid). Microarray data were compared at the highest non-cytotoxic concentration for all 12 toxicants. A support vector machine (SVM)-based classifier predicted all HDACi correctly. For validation, the classifier was applied to legacy data sets of HDACi, and for each exposure situation, the SVM predictions correlated with the developmental toxicity. Finally, optimization of the classifier based on 100 probe sets showed that eight genes (F2RL2, TFAP2B, EDNRA, FOXD3, SIX3, MT1E, ETS1 and LHX2) are sufficient to separate HDACi from mercurials. Our data demonstrate how human stem cells and transcriptome analysis can be combined for mechanistic grouping and prediction of toxicants. Extension of this concept to mechanisms beyond HDACi would allow prediction of human developmental toxicity hazard of unknown compounds with the UKN1 test system.</dcterms:abstract> <dc:contributor>Meisig, Johannes</dc:contributor> <dcterms:title>A transcriptome-based classifier to identify developmental toxicants by stem cell testing : design, validation and optimization for histone deacetylase inhibitors</dcterms:title> <dc:contributor>Waldmann, Tanja</dc:contributor> <dc:creator>Meisig, Johannes</dc:creator> <dc:contributor>Blüthgen, Nils</dc:contributor> <dc:creator>Hengstler, Jan G.</dc:creator> <dc:creator>Shinde, Vaibhav</dc:creator> <dc:contributor>Schildknecht, Stefan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-08T12:01:13Z</dcterms:available> <dc:creator>Sachinidis, Agapios</dc:creator> <dc:creator>Schildknecht, Stefan</dc:creator> <dc:creator>Das Gaspar, John Antony</dc:creator> </rdf:Description> </rdf:RDF>