Publikation:

Data-Driven Mark Orientation for Trend Estimation in Scatterplots

Lade...
Vorschaubild

Dateien

Liu_2-15gox8p3ngij21.pdf
Liu_2-15gox8p3ngij21.pdfGröße: 3.26 MBDownloads: 65

Datum

2021

Autor:innen

Liu, Tingting
Li, Xiaotong
Bao, Chen
Correll, Michael
Tu, Changehe
Wang, Yunhai

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

KITAMURA, Yoshifumi, ed., Aaron QUIGLEY, ed.. CHI’21 : Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. New York, NY: ACM, 2021, 473. ISBN 978-1-4503-8096-6. Available under: doi: 10.1145/3411764.3445751

Zusammenfassung

A common task for scatterplots is communicating trends in bivariate data. However, the ability of people to visually estimate these trends is under-explored, especially when the data violate assumptions required for common statistical models, or visual trend estimates are in conflict with statistical ones. In such cases, designers may need to intervene and de-bias these estimations, or otherwise inform viewers about differences between statistical and visual trend estimations. We propose data-driven mark orientation as a solution in such cases, where the directionality of marks in the scatterplot guide participants when visual estimation is otherwise unclear or ambiguous. Through a set of laboratory studies, we investigate trend estimation across a variety of data distributions and mark directionalities, and find that data-driven mark orientation can help resolve ambiguities in visual trend estimates.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

2021 CHI Conference on Human Factors in Computing Systems, 8. Mai 2021 - 13. Mai 2021, Yokohama Japan
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LIU, Tingting, Xiaotong LI, Chen BAO, Michael CORRELL, Changehe TU, Oliver DEUSSEN, Yunhai WANG, 2021. Data-Driven Mark Orientation for Trend Estimation in Scatterplots. 2021 CHI Conference on Human Factors in Computing Systems. Yokohama Japan, 8. Mai 2021 - 13. Mai 2021. In: KITAMURA, Yoshifumi, ed., Aaron QUIGLEY, ed.. CHI’21 : Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. New York, NY: ACM, 2021, 473. ISBN 978-1-4503-8096-6. Available under: doi: 10.1145/3411764.3445751
BibTex
@inproceedings{Liu2021DataD-56523,
  year={2021},
  doi={10.1145/3411764.3445751},
  title={Data-Driven Mark Orientation for Trend Estimation in Scatterplots},
  isbn={978-1-4503-8096-6},
  publisher={ACM},
  address={New York, NY},
  booktitle={CHI’21 : Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems},
  editor={Kitamura, Yoshifumi and Quigley, Aaron},
  author={Liu, Tingting and Li, Xiaotong and Bao, Chen and Correll, Michael and Tu, Changehe and Deussen, Oliver and Wang, Yunhai},
  note={Article Number: 473}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56523">
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:title>Data-Driven Mark Orientation for Trend Estimation in Scatterplots</dcterms:title>
    <dc:contributor>Li, Xiaotong</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-10T14:57:19Z</dcterms:available>
    <dc:creator>Tu, Changehe</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Correll, Michael</dc:creator>
    <dc:contributor>Correll, Michael</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56523/1/Liu_2-15gox8p3ngij21.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56523/1/Liu_2-15gox8p3ngij21.pdf"/>
    <dc:creator>Bao, Chen</dc:creator>
    <dc:creator>Liu, Tingting</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dc:contributor>Liu, Tingting</dc:contributor>
    <dc:creator>Wang, Yunhai</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Tu, Changehe</dc:contributor>
    <dc:creator>Li, Xiaotong</dc:creator>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-10T14:57:19Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56523"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Bao, Chen</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Wang, Yunhai</dc:contributor>
    <dcterms:abstract xml:lang="eng">A common task for scatterplots is communicating trends in bivariate data. However, the ability of people to visually estimate these trends is under-explored, especially when the data violate assumptions required for common statistical models, or visual trend estimates are in conflict with statistical ones. In such cases, designers may need to intervene and de-bias these estimations, or otherwise inform viewers about differences between statistical and visual trend estimations. We propose data-driven mark orientation as a solution in such cases, where the directionality of marks in the scatterplot guide participants when visual estimation is otherwise unclear or ambiguous. Through a set of laboratory studies, we investigate trend estimation across a variety of data distributions and mark directionalities, and find that data-driven mark orientation can help resolve ambiguities in visual trend estimates.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen