Publikation: Granularity for Mixed-Integer Polynomial Optimization Problems
Lade...
Dateien
Datum
2025
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Institutionen der Bundesrepublik Deutschland: 01JA2024
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Optimization Theory and Applications. Springer. 2025, 205(2), 22. ISSN 0022-3239. eISSN 1573-2878. Verfügbar unter: doi: 10.1007/s10957-025-02631-6
Zusammenfassung
Finding good feasible points is crucial in mixed-integer programming. For this purpose we combine a sufficient condition for consistency, called granularity, with the moment-/sum-of-squares-hierarchy from polynomial optimization. If the mixed-integer problem is granular, we obtain feasible points by solving continuous polynomial problems and rounding their optimal points. The moment-/sum-of-squares-hierarchy is hereby used to solve those continuous polynomial problems, which generalizes known methods from the literature. Numerical examples from the MINLPLib illustrate our approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
EGGEN, Carl, Oliver STEIN, Stefan VOLKWEIN, 2025. Granularity for Mixed-Integer Polynomial Optimization Problems. In: Journal of Optimization Theory and Applications. Springer. 2025, 205(2), 22. ISSN 0022-3239. eISSN 1573-2878. Verfügbar unter: doi: 10.1007/s10957-025-02631-6BibTex
@article{Eggen2025-05Granu-72694, title={Granularity for Mixed-Integer Polynomial Optimization Problems}, year={2025}, doi={10.1007/s10957-025-02631-6}, number={2}, volume={205}, issn={0022-3239}, journal={Journal of Optimization Theory and Applications}, author={Eggen, Carl and Stein, Oliver and Volkwein, Stefan}, note={Article Number: 22} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72694"> <dc:creator>Volkwein, Stefan</dc:creator> <dc:creator>Stein, Oliver</dc:creator> <dc:creator>Eggen, Carl</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract>Finding good feasible points is crucial in mixed-integer programming. For this purpose we combine a sufficient condition for consistency, called granularity, with the moment-/sum-of-squares-hierarchy from polynomial optimization. If the mixed-integer problem is granular, we obtain feasible points by solving continuous polynomial problems and rounding their optimal points. The moment-/sum-of-squares-hierarchy is hereby used to solve those continuous polynomial problems, which generalizes known methods from the literature. Numerical examples from the MINLPLib illustrate our approach.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72694/1/Eggen_2-15gpgtns3tros6.pdf"/> <dc:contributor>Eggen, Carl</dc:contributor> <dc:contributor>Volkwein, Stefan</dc:contributor> <dcterms:issued>2025-05</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72694"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Stein, Oliver</dc:contributor> <dcterms:title>Granularity for Mixed-Integer Polynomial Optimization Problems</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-19T06:59:44Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/72694/1/Eggen_2-15gpgtns3tros6.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-19T06:59:44Z</dcterms:available> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja