Publikation:

Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2013

Autor:innen

Hansen, Katja
Montavon, Grégoire
Biegler, Franziska
Fazli, Siamac
Scheffler, Matthias
von Lilienfeld, O. Anatole
Tkatchenko, Alexandre
Müller, Klaus-Robert

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Chemical Theory and Computation (JCTC). American Chemical Society (ACS). 2013, 9(8), pp. 3404-3419. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/ct400195d

Zusammenfassung

The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690HANSEN, Katja, Grégoire MONTAVON, Franziska BIEGLER, Siamac FAZLI, Matthias RUPP, Matthias SCHEFFLER, O. Anatole VON LILIENFELD, Alexandre TKATCHENKO, Klaus-Robert MÜLLER, 2013. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. In: Journal of Chemical Theory and Computation (JCTC). American Chemical Society (ACS). 2013, 9(8), pp. 3404-3419. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/ct400195d
BibTex
@article{Hansen2013-08-13Asses-52587,
  year={2013},
  doi={10.1021/ct400195d},
  title={Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies},
  number={8},
  volume={9},
  issn={1549-9618},
  journal={Journal of Chemical Theory and Computation (JCTC)},
  pages={3404--3419},
  author={Hansen, Katja and Montavon, Grégoire and Biegler, Franziska and Fazli, Siamac and Rupp, Matthias and Scheffler, Matthias and von Lilienfeld, O. Anatole and Tkatchenko, Alexandre and Müller, Klaus-Robert}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52587">
    <dc:creator>Hansen, Katja</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:23:14Z</dc:date>
    <dc:creator>Montavon, Grégoire</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:23:14Z</dcterms:available>
    <dc:creator>Fazli, Siamac</dc:creator>
    <dcterms:issued>2013-08-13</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52587"/>
    <dcterms:abstract xml:lang="eng">The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.</dcterms:abstract>
    <dc:contributor>Müller, Klaus-Robert</dc:contributor>
    <dc:contributor>Fazli, Siamac</dc:contributor>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dc:creator>Tkatchenko, Alexandre</dc:creator>
    <dc:creator>von Lilienfeld, O. Anatole</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Hansen, Katja</dc:contributor>
    <dc:contributor>Biegler, Franziska</dc:contributor>
    <dc:creator>Biegler, Franziska</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Montavon, Grégoire</dc:contributor>
    <dcterms:title>Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Scheffler, Matthias</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Scheffler, Matthias</dc:creator>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dc:contributor>von Lilienfeld, O. Anatole</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Müller, Klaus-Robert</dc:creator>
    <dc:contributor>Tkatchenko, Alexandre</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen