Publikation: Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HANSEN, Katja, Grégoire MONTAVON, Franziska BIEGLER, Siamac FAZLI, Matthias RUPP, Matthias SCHEFFLER, O. Anatole VON LILIENFELD, Alexandre TKATCHENKO, Klaus-Robert MÜLLER, 2013. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. In: Journal of Chemical Theory and Computation (JCTC). American Chemical Society (ACS). 2013, 9(8), pp. 3404-3419. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/ct400195dBibTex
@article{Hansen2013-08-13Asses-52587, year={2013}, doi={10.1021/ct400195d}, title={Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies}, number={8}, volume={9}, issn={1549-9618}, journal={Journal of Chemical Theory and Computation (JCTC)}, pages={3404--3419}, author={Hansen, Katja and Montavon, Grégoire and Biegler, Franziska and Fazli, Siamac and Rupp, Matthias and Scheffler, Matthias and von Lilienfeld, O. Anatole and Tkatchenko, Alexandre and Müller, Klaus-Robert} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52587"> <dc:creator>Hansen, Katja</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:23:14Z</dc:date> <dc:creator>Montavon, Grégoire</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-28T09:23:14Z</dcterms:available> <dc:creator>Fazli, Siamac</dc:creator> <dcterms:issued>2013-08-13</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52587"/> <dcterms:abstract xml:lang="eng">The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.</dcterms:abstract> <dc:contributor>Müller, Klaus-Robert</dc:contributor> <dc:contributor>Fazli, Siamac</dc:contributor> <dc:contributor>Rupp, Matthias</dc:contributor> <dc:creator>Tkatchenko, Alexandre</dc:creator> <dc:creator>von Lilienfeld, O. Anatole</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Hansen, Katja</dc:contributor> <dc:contributor>Biegler, Franziska</dc:contributor> <dc:creator>Biegler, Franziska</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Montavon, Grégoire</dc:contributor> <dcterms:title>Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Scheffler, Matthias</dc:contributor> <dc:language>eng</dc:language> <dc:rights>terms-of-use</dc:rights> <dc:creator>Scheffler, Matthias</dc:creator> <dc:creator>Rupp, Matthias</dc:creator> <dc:contributor>von Lilienfeld, O. Anatole</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Müller, Klaus-Robert</dc:creator> <dc:contributor>Tkatchenko, Alexandre</dc:contributor> </rdf:Description> </rdf:RDF>