Publikation: Secrets of the Sea Urchin Spicule Revealed : Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The formation of the sea urchin spicule involves the stabilization and transformation of amorphous calcium carbonate (ACC) and assembly of ACC nanoparticle precursors into a mesoscale single crystal of fracture-resistant calcite. This process of particle assembly or attachment is under the control of a family of proteins known as the spicule matrix [Strongylocentrotus purpuratus (SpSM)] proteome. Recently, two members of this proteome, SpSM50 and the glycoprotein SpSM30B/C-G (in recombinant forms), were found to interact together via SpSM30B/C-G oligosaccharide–SpSM50 protein interactions to form hybrid protein hydrogels with unique physical properties. In this study, we investigate the mineralization properties of this hybrid hydrogel alongside the hydrogels formed by SpSM50 and SpSM30B/C-G individually. We find that the SpSM50 + SpSM30B/C-G hybrid hydrogel is synergistic with regard to surface modifications and intracrystalline inclusions of existing calcite crystals, the inhibition of ACC formation, and the kinetic destabilization of ACC to form a crystalline phase. Most importantly, the hybrid hydrogel phase assembles and organizes mineral particles into discrete clusters or domains within in vitro mineralization environments. Thus, the interactions of SpSM50 and SpSM30B/C-G, mediated by carbohydrate–protein binding, reflect the need for protein cooperativity for the ACC-to-crystalline transformation, intracrystalline void formation, and guided mineral particle assembly processes that are instrumental in spicule formation.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
PENDOLA, Martin, Gaurav JAIN, Yu-Chieh HUANG, Denis GEBAUER, John Spencer EVANS, 2018. Secrets of the Sea Urchin Spicule Revealed : Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation. In: ACS Omega. 2018, 3(9), pp. 11823-11830. eISSN 2470-1343. Available under: doi: 10.1021/acsomega.8b01697BibTex
@article{Pendola2018-09-30Secre-43743, year={2018}, doi={10.1021/acsomega.8b01697}, title={Secrets of the Sea Urchin Spicule Revealed : Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation}, number={9}, volume={3}, journal={ACS Omega}, pages={11823--11830}, author={Pendola, Martin and Jain, Gaurav and Huang, Yu-Chieh and Gebauer, Denis and Evans, John Spencer} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43743"> <dcterms:issued>2018-09-30</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-09T08:21:47Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43743"/> <dc:contributor>Pendola, Martin</dc:contributor> <dc:contributor>Jain, Gaurav</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Jain, Gaurav</dc:creator> <dc:contributor>Evans, John Spencer</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:creator>Gebauer, Denis</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Huang, Yu-Chieh</dc:contributor> <dc:creator>Pendola, Martin</dc:creator> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dc:creator>Evans, John Spencer</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43743/3/Pendola_2-15jm0598v0fzk4.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">The formation of the sea urchin spicule involves the stabilization and transformation of amorphous calcium carbonate (ACC) and assembly of ACC nanoparticle precursors into a mesoscale single crystal of fracture-resistant calcite. This process of particle assembly or attachment is under the control of a family of proteins known as the spicule matrix [Strongylocentrotus purpuratus (SpSM)] proteome. Recently, two members of this proteome, SpSM50 and the glycoprotein SpSM30B/C-G (in recombinant forms), were found to interact together via SpSM30B/C-G oligosaccharide–SpSM50 protein interactions to form hybrid protein hydrogels with unique physical properties. In this study, we investigate the mineralization properties of this hybrid hydrogel alongside the hydrogels formed by SpSM50 and SpSM30B/C-G individually. We find that the SpSM50 + SpSM30B/C-G hybrid hydrogel is synergistic with regard to surface modifications and intracrystalline inclusions of existing calcite crystals, the inhibition of ACC formation, and the kinetic destabilization of ACC to form a crystalline phase. Most importantly, the hybrid hydrogel phase assembles and organizes mineral particles into discrete clusters or domains within in vitro mineralization environments. Thus, the interactions of SpSM50 and SpSM30B/C-G, mediated by carbohydrate–protein binding, reflect the need for protein cooperativity for the ACC-to-crystalline transformation, intracrystalline void formation, and guided mineral particle assembly processes that are instrumental in spicule formation.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43743/3/Pendola_2-15jm0598v0fzk4.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Gebauer, Denis</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-09T08:21:47Z</dc:date> <dc:creator>Huang, Yu-Chieh</dc:creator> <dcterms:title>Secrets of the Sea Urchin Spicule Revealed : Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>