Integrating animal movement with habitat suitability for estimating dynamic migratory connectivity

Loading...
Thumbnail Image
Date
2018
Authors
van Toor, Mariëlle L.
Newman, Scott H.
Prosser, Diann J.
Takekawa, John Y.
Technitis, Georgios
Weibel, Robert
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Landscape Ecology ; 33 (2018), 6. - pp. 879-893. - ISSN 0921-2973. - eISSN 1572-9761
Abstract
High-resolution animal movement data are becoming increasingly available, yet having a multitude of empirical trajectories alone does not allow us to easily predict animal movement. To answer ecological and evolutionary questions at a population level, quantitative estimates of a species’ potential to link patches or populations are of importance.

Objectives

We introduce an approach that combines movement-informed simulated trajectories with an environment-informed estimate of the trajectories’ plausibility to derive connectivity. Using the example of bar-headed geese we estimated migratory connectivity at a landscape level throughout the annual cycle in their native range.

Methods

We used tracking data of bar-headed geese to develop a multi-state movement model and to estimate temporally explicit habitat suitability within the species’ range. We simulated migratory movements between range fragments, and calculated a measure we called route viability. The results are compared to expectations derived from published literature.

Results

Simulated migrations matched empirical trajectories in key characteristics such as stopover duration. The viability of the simulated trajectories was similar to that of the empirical trajectories. We found that, overall, the migratory connectivity was higher within the breeding than in wintering areas, corroborating previous findings for this species.

Conclusions

We show how empirical tracking data and environmental information can be fused for meaningful predictions of animal movements throughout the year and even outside the spatial range of the available data. Beyond predicting migratory connectivity, our framework will prove useful for modelling ecological processes facilitated by animal movement, such as seed dispersal or disease ecology.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Anser indicus; Bar-headed goose; Empirical random trajectory generator; Migratory connectivity; Movement model; Stepping-stone migration model
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690VAN TOOR, Mariëlle L., Bart KRANSTAUBER, Scott H. NEWMAN, Diann J. PROSSER, John Y. TAKEKAWA, Georgios TECHNITIS, Robert WEIBEL, Martin WIKELSKI, Kamran SAFI, 2018. Integrating animal movement with habitat suitability for estimating dynamic migratory connectivity. In: Landscape Ecology. 33(6), pp. 879-893. ISSN 0921-2973. eISSN 1572-9761. Available under: doi: 10.1007/s10980-018-0637-9
BibTex
@article{vanToor2018Integ-43015,
  year={2018},
  doi={10.1007/s10980-018-0637-9},
  title={Integrating animal movement with habitat suitability for estimating dynamic migratory connectivity},
  number={6},
  volume={33},
  issn={0921-2973},
  journal={Landscape Ecology},
  pages={879--893},
  author={van Toor, Mariëlle L. and Kranstauber, Bart and Newman, Scott H. and Prosser, Diann J. and Takekawa, John Y. and Technitis, Georgios and Weibel, Robert and Wikelski, Martin and Safi, Kamran}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43015">
    <dc:contributor>Wikelski, Martin</dc:contributor>
    <dc:contributor>Kranstauber, Bart</dc:contributor>
    <dc:contributor>Technitis, Georgios</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Prosser, Diann J.</dc:contributor>
    <dc:contributor>Weibel, Robert</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43015/3/VanToor_2-15ot4zxi5o6z38.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:abstract xml:lang="eng">High-resolution animal movement data are becoming increasingly available, yet having a multitude of empirical trajectories alone does not allow us to easily predict animal movement. To answer ecological and evolutionary questions at a population level, quantitative estimates of a species’ potential to link patches or populations are of importance.&lt;br /&gt;&lt;br /&gt;Objectives&lt;br /&gt;&lt;br /&gt;We introduce an approach that combines movement-informed simulated trajectories with an environment-informed estimate of the trajectories’ plausibility to derive connectivity. Using the example of bar-headed geese we estimated migratory connectivity at a landscape level throughout the annual cycle in their native range.&lt;br /&gt;&lt;br /&gt;Methods&lt;br /&gt;&lt;br /&gt;We used tracking data of bar-headed geese to develop a multi-state movement model and to estimate temporally explicit habitat suitability within the species’ range. We simulated migratory movements between range fragments, and calculated a measure we called route viability. The results are compared to expectations derived from published literature.&lt;br /&gt;&lt;br /&gt;Results&lt;br /&gt;&lt;br /&gt;Simulated migrations matched empirical trajectories in key characteristics such as stopover duration. The viability of the simulated trajectories was similar to that of the empirical trajectories. We found that, overall, the migratory connectivity was higher within the breeding than in wintering areas, corroborating previous findings for this species.&lt;br /&gt;&lt;br /&gt;Conclusions&lt;br /&gt;&lt;br /&gt;We show how empirical tracking data and environmental information can be fused for meaningful predictions of animal movements throughout the year and even outside the spatial range of the available data. Beyond predicting migratory connectivity, our framework will prove useful for modelling ecological processes facilitated by animal movement, such as seed dispersal or disease ecology.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Takekawa, John Y.</dc:contributor>
    <dc:creator>Takekawa, John Y.</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Prosser, Diann J.</dc:creator>
    <dc:contributor>Safi, Kamran</dc:contributor>
    <dc:creator>van Toor, Mariëlle L.</dc:creator>
    <dc:creator>Technitis, Georgios</dc:creator>
    <dc:creator>Kranstauber, Bart</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-08T09:11:43Z</dcterms:available>
    <dc:creator>Safi, Kamran</dc:creator>
    <dcterms:title>Integrating animal movement with habitat suitability for estimating dynamic migratory connectivity</dcterms:title>
    <dc:creator>Newman, Scott H.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-08-08T09:11:43Z</dc:date>
    <dc:contributor>van Toor, Mariëlle L.</dc:contributor>
    <dcterms:issued>2018</dcterms:issued>
    <dc:contributor>Newman, Scott H.</dc:contributor>
    <dc:creator>Weibel, Robert</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43015/3/VanToor_2-15ot4zxi5o6z38.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43015"/>
    <dc:creator>Wikelski, Martin</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Unknown