Publikation: Decay rates for solutions of degenerate parabolic systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Explicit decay rates for solutions of systems of degenerate parabolic equations in the whole space or in bounded domains subject to homogeneous Dirichlet boundary conditions are proven. These systems include the scalar porous medium, fast diffusion and p-Laplace equation and strongly coupled systems of these equations. For the whole space problem, the (algebraic) decay rates turn out to be optimal. In the case of bounded domains, algebraic and exponential decay rates are shown to hold depending on the nonlinearities. The proofs of these results rely on the use of the entropy functional together with generalized Nash inequalities (for the whole space problem) or Poincare inqualities (for the bounded domain case).
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
JÜNGEL, Ansgar, Peter A. MARKOVICH, Giuseppe TOSCANI, 2000. Decay rates for solutions of degenerate parabolic systemsBibTex
@unpublished{Jungel2000Decay-6015, year={2000}, title={Decay rates for solutions of degenerate parabolic systems}, author={Jüngel, Ansgar and Markovich, Peter A. and Toscani, Giuseppe} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6015"> <dc:contributor>Toscani, Giuseppe</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:format>application/pdf</dc:format> <dc:creator>Toscani, Giuseppe</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:46Z</dc:date> <dc:contributor>Jüngel, Ansgar</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6015/1/preprint_118.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6015/1/preprint_118.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:46Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2000</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Markovich, Peter A.</dc:contributor> <dc:creator>Markovich, Peter A.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6015"/> <dc:creator>Jüngel, Ansgar</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Decay rates for solutions of degenerate parabolic systems</dcterms:title> <dcterms:abstract xml:lang="eng">Explicit decay rates for solutions of systems of degenerate parabolic equations in the whole space or in bounded domains subject to homogeneous Dirichlet boundary conditions are proven. These systems include the scalar porous medium, fast diffusion and p-Laplace equation and strongly coupled systems of these equations. For the whole space problem, the (algebraic) decay rates turn out to be optimal. In the case of bounded domains, algebraic and exponential decay rates are shown to hold depending on the nonlinearities. The proofs of these results rely on the use of the entropy functional together with generalized Nash inequalities (for the whole space problem) or Poincare inqualities (for the bounded domain case).</dcterms:abstract> </rdf:Description> </rdf:RDF>