Publikation:

Decay rates for solutions of degenerate parabolic systems

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2000

Autor:innen

Jüngel, Ansgar
Markovich, Peter A.
Toscani, Giuseppe

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Preprint
Publikationsstatus
Published

Erschienen in

Zusammenfassung

Explicit decay rates for solutions of systems of degenerate parabolic equations in the whole space or in bounded domains subject to homogeneous Dirichlet boundary conditions are proven. These systems include the scalar porous medium, fast diffusion and p-Laplace equation and strongly coupled systems of these equations. For the whole space problem, the (algebraic) decay rates turn out to be optimal. In the case of bounded domains, algebraic and exponential decay rates are shown to hold depending on the nonlinearities. The proofs of these results rely on the use of the entropy functional together with generalized Nash inequalities (for the whole space problem) or Poincare inqualities (for the bounded domain case).

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690JÜNGEL, Ansgar, Peter A. MARKOVICH, Giuseppe TOSCANI, 2000. Decay rates for solutions of degenerate parabolic systems
BibTex
@unpublished{Jungel2000Decay-6015,
  year={2000},
  title={Decay rates for solutions of degenerate parabolic systems},
  author={Jüngel, Ansgar and Markovich, Peter A. and Toscani, Giuseppe}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6015">
    <dc:contributor>Toscani, Giuseppe</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:format>application/pdf</dc:format>
    <dc:creator>Toscani, Giuseppe</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:46Z</dc:date>
    <dc:contributor>Jüngel, Ansgar</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6015/1/preprint_118.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6015/1/preprint_118.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:46Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2000</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Markovich, Peter A.</dc:contributor>
    <dc:creator>Markovich, Peter A.</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6015"/>
    <dc:creator>Jüngel, Ansgar</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>Decay rates for solutions of degenerate parabolic systems</dcterms:title>
    <dcterms:abstract xml:lang="eng">Explicit decay rates for solutions of systems of degenerate parabolic equations in the whole space or in bounded domains subject to homogeneous Dirichlet boundary conditions are proven. These systems include the scalar porous medium, fast diffusion and p-Laplace equation and strongly coupled systems of these equations. For the whole space problem, the (algebraic) decay rates turn out to be optimal. In the case of bounded domains, algebraic and exponential decay rates are shown to hold depending on the nonlinearities. The proofs of these results rely on the use of the entropy functional together with generalized Nash inequalities (for the whole space problem) or Poincare inqualities (for the bounded domain case).</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen