Publikation:

Discovering OLAP dimensions in semi-structured data

Lade...
Vorschaubild

Dateien

Mansmann_228587.pdf
Mansmann_228587.pdfGröße: 960.5 KBDownloads: 879

Datum

2012

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

Proceedings of the fifteenth international workshop on Data warehousing and OLAP - DOLAP '12. New York, New York, USA: ACM Press, 2012, pp. 9-16. ISBN 978-1-4503-1721-4. Available under: doi: 10.1145/2390045.2390048

Zusammenfassung

With the standard OLAP technology, cubes are constructed from the input data based on the available data fields and known relationships between them. Structuring the data into a set of numeric measures distributed along a set of uniformly structured dimensions may be unrealistic for applications dealing with semi-structured data. We propose to extend the capabilities of OLAP via content-driven discovery of measures and dimensional characteristics in the original dataset. New structural elements are discovered by means of data mining and other techniques and are therefore prone to changes as the underlying dataset evolves. In this work we focus on the challenge of generating, maintaining, and querying such discovered elements of the cube.

We demonstrate the benefits of our approach by providing OLAP to the public stream of user-generated content of the popular microblogging service Twitter. We were able to enrich the original set by discovering dynamic characteristics such as user activity, popularity, messaging behavior, as well as classifying messages by topic, impact, origin, method of generation, etc. Application of knowledge discovery techniques coupled with human expertise enable structural enrichment of the original data beyond the scope of the existing methods for generating multidimensional models from relational or semi-structured data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

The fifteenth international workshop on Data warehousing and OLAP - DOLAP '12, 2. Nov. 2012 - 2. Nov. 2012, Maui, Hawaii, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MANSMANN, Svetlana, Nafees Ur REHMAN, Andreas WEILER, Marc H. SCHOLL, 2012. Discovering OLAP dimensions in semi-structured data. The fifteenth international workshop on Data warehousing and OLAP - DOLAP '12. Maui, Hawaii, USA, 2. Nov. 2012 - 2. Nov. 2012. In: Proceedings of the fifteenth international workshop on Data warehousing and OLAP - DOLAP '12. New York, New York, USA: ACM Press, 2012, pp. 9-16. ISBN 978-1-4503-1721-4. Available under: doi: 10.1145/2390045.2390048
BibTex
@inproceedings{Mansmann2012Disco-22858,
  year={2012},
  doi={10.1145/2390045.2390048},
  title={Discovering OLAP dimensions in semi-structured data},
  isbn={978-1-4503-1721-4},
  publisher={ACM Press},
  address={New York, New York, USA},
  booktitle={Proceedings of the fifteenth international workshop on Data warehousing and OLAP - DOLAP '12},
  pages={9--16},
  author={Mansmann, Svetlana and Rehman, Nafees Ur and Weiler, Andreas and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22858">
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dc:contributor>Rehman, Nafees Ur</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22858/2/Mansmann_228587.pdf"/>
    <dcterms:title>Discovering OLAP dimensions in semi-structured data</dcterms:title>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:bibliographicCitation>DOLAP'12 Proceedings of the fifteenth international workshop on Data warehousing and OLAP / Il-Yeol Song, Matteo Golfarelli (eds.). - New York, NY : ACM, 2012. - S. 9-16. - ISBN 978-1-4503-1721-4</dcterms:bibliographicCitation>
    <dc:contributor>Mansmann, Svetlana</dc:contributor>
    <dcterms:abstract xml:lang="eng">With the standard OLAP technology, cubes are constructed from the input data based on the available data fields and known relationships between them. Structuring the data into a set of numeric measures distributed along a set of uniformly structured dimensions may be unrealistic for applications dealing with semi-structured data. We propose to extend the capabilities of OLAP via content-driven discovery of measures and dimensional characteristics in the original dataset. New structural elements are discovered by means of data mining and other techniques and are therefore prone to changes as the underlying dataset evolves. In this work we focus on the challenge of generating, maintaining, and querying such discovered elements of the cube.&lt;br /&gt;&lt;br /&gt;We demonstrate the benefits of our approach by providing OLAP to the public stream of user-generated content of the popular microblogging service Twitter. We were able to enrich the original set by discovering dynamic characteristics such as user activity, popularity, messaging behavior, as well as classifying messages by topic, impact, origin, method of generation, etc. Application of knowledge discovery techniques coupled with human expertise enable structural enrichment of the original data beyond the scope of the existing methods for generating multidimensional models from relational or semi-structured data.</dcterms:abstract>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22858"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Mansmann, Svetlana</dc:creator>
    <dcterms:issued>2012</dcterms:issued>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-04-19T13:58:19Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-04-19T13:58:19Z</dc:date>
    <dc:creator>Rehman, Nafees Ur</dc:creator>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dc:language>eng</dc:language>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22858/2/Mansmann_228587.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen