Publikation: Social Information Improves Location Prediction in the Wild
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
How can knowing the location of my friends be used to more accurately predict my location? This paper explores socially-aware location prediction under a particularly challenging setting where the underlying interactions and social network are unknown and must be inferred over continuous spatiotemporal data. Our method samples inferred network topology using a linear regression model to predict future individual locations. We present an in-depth empirical study comparing different network models and network sampling regimes under a bootstrapped sampling baseline. Furthermore, our qualitative analysis demonstrates the value of social information in population mobility modeling under our application’s challenges.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LI, Jai, Ivan BRUGERE, Brian ZIEBART, Tanya BERGER-WOLF, Margaret C. CROFOOT, Damien R. FARINE, 2015. Social Information Improves Location Prediction in the Wild. Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. Austin, TX, USA, 25. Jan. 2015 - 26. Jan. 2015. In: Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence. Menlo Park, CA, USA: AAAI Publications, 2015, pp. 25-32BibTex
@inproceedings{Li2015Socia-46641, year={2015}, title={Social Information Improves Location Prediction in the Wild}, url={https://www.aaai.org/ocs/index.php/WS/AAAIW15/paper/viewPaper/10199}, publisher={AAAI Publications}, address={Menlo Park, CA, USA}, booktitle={Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence}, pages={25--32}, author={Li, Jai and Brugere, Ivan and Ziebart, Brian and Berger-Wolf, Tanya and Crofoot, Margaret C. and Farine, Damien R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46641"> <dc:contributor>Brugere, Ivan</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46641"/> <dcterms:issued>2015</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Li, Jai</dc:contributor> <dc:creator>Berger-Wolf, Tanya</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T10:30:20Z</dcterms:available> <dc:creator>Ziebart, Brian</dc:creator> <dc:creator>Brugere, Ivan</dc:creator> <dc:contributor>Ziebart, Brian</dc:contributor> <dc:contributor>Berger-Wolf, Tanya</dc:contributor> <dc:contributor>Crofoot, Margaret C.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Social Information Improves Location Prediction in the Wild</dcterms:title> <dc:creator>Crofoot, Margaret C.</dc:creator> <dc:creator>Farine, Damien R.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-07T10:30:20Z</dc:date> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Farine, Damien R.</dc:contributor> <dcterms:abstract xml:lang="eng">How can knowing the location of my friends be used to more accurately predict my location? This paper explores socially-aware location prediction under a particularly challenging setting where the underlying interactions and social network are unknown and must be inferred over continuous spatiotemporal data. Our method samples inferred network topology using a linear regression model to predict future individual locations. We present an in-depth empirical study comparing different network models and network sampling regimes under a bootstrapped sampling baseline. Furthermore, our qualitative analysis demonstrates the value of social information in population mobility modeling under our application’s challenges.</dcterms:abstract> <dc:creator>Li, Jai</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>