Publikation:

Visual opinion analysis of customer feedback data

Lade...
Vorschaubild

Dateien

Camera_ready_Ming_Hao_VAST09.pdf
Camera_ready_Ming_Hao_VAST09.pdfGröße: 1.37 MBDownloads: 2382

Datum

2009

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2009 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2009, pp. 187-194. ISBN 978-1-4244-5283-5. Available under: doi: 10.1109/VAST.2009.5333919

Zusammenfassung

Today, online stores collect a lot of customer feedback in the form of surveys, reviews, and comments. This feedback is categorized and in some cases responded to, but in general it is underutilized even though customer satisfaction is essential to the success of their business. In this paper, we introduce several new techniques to interactively analyze customer comments and ratings to determine the positive and negative opinions expressed by the customers. First, we introduce a new discrimination-based technique to automatically extract the terms that are the subject of the positive or negative opinion (such as price or customer service) and that are frequently commented on. Second, we derive a Reverse-Distance-Weighting method to map the attributes to the related positive and negative opinions in the text. Third, the resulting high-dimensional feature vectors are visualized in a new summary representation that provides a quick overview. We also cluster the reviews according to the similarity of the comments. Special thumbnails are used to provide insight into the composition of the clusters and their relationship. In addition, an interactive circular correlation map is provided to allow analysts to detect the relationships of the comments to other important attributes and the scores. We have applied these techniques to customer comments from real-world online stores and product reviews from web sites to identify the strength and problems of different products and services, and show the potential of our technique.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

visual opinion analysis, visual sentiment analysis, visual document analysis, attribute extraction

Konferenz

2009 IEEE Symposium on Visual Analytics Science and Technology, 12. Okt. 2009 - 13. Okt. 2009, Atlantic City, NJ, USA
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690OELKE, Daniela, Ming C. HAO, Christian ROHRDANTZ, Daniel A. KEIM, Umeshwar DAYAL, Lars-Erik HAUG, Halldor JANETZKO, 2009. Visual opinion analysis of customer feedback data. 2009 IEEE Symposium on Visual Analytics Science and Technology. Atlantic City, NJ, USA, 12. Okt. 2009 - 13. Okt. 2009. In: 2009 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2009, pp. 187-194. ISBN 978-1-4244-5283-5. Available under: doi: 10.1109/VAST.2009.5333919
BibTex
@inproceedings{Oelke2009-10Visua-6392,
  year={2009},
  doi={10.1109/VAST.2009.5333919},
  title={Visual opinion analysis of customer feedback data},
  isbn={978-1-4244-5283-5},
  publisher={IEEE},
  booktitle={2009 IEEE Symposium on Visual Analytics Science and Technology},
  pages={187--194},
  author={Oelke, Daniela and Hao, Ming C. and Rohrdantz, Christian and Keim, Daniel A. and Dayal, Umeshwar and Haug, Lars-Erik and Janetzko, Halldor}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/6392">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:25Z</dc:date>
    <dc:contributor>Haug, Lars-Erik</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Rohrdantz, Christian</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Dayal, Umeshwar</dc:contributor>
    <dcterms:issued>2009-10</dcterms:issued>
    <dc:contributor>Rohrdantz, Christian</dc:contributor>
    <dc:creator>Hao, Ming C.</dc:creator>
    <dc:contributor>Oelke, Daniela</dc:contributor>
    <dc:creator>Haug, Lars-Erik</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Janetzko, Halldor</dc:contributor>
    <dcterms:bibliographicCitation>First publ. in: IEEE Symposium on Visual Analytics Science and Technology (VAST) : Atlantic City, New Jersey, USA, October 12-13, 2009 : proceedings / John Stasko.  -[Piscataway, N.J.] : IEEE Xplore, 2009. - pp. 187-194. - ISBN 978-1-4244-5283-5</dcterms:bibliographicCitation>
    <dc:creator>Dayal, Umeshwar</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6392/1/Camera_ready_Ming_Hao_VAST09.pdf"/>
    <dcterms:abstract xml:lang="eng">Today, online stores collect a lot of customer feedback in the form of surveys, reviews, and comments. This feedback is categorized and in some cases responded to, but in general it is underutilized   even though customer satisfaction is essential to the success of their business. In this paper, we introduce several new techniques to interactively analyze customer comments and ratings to determine the positive and negative opinions expressed by the customers. First, we introduce a new discrimination-based technique to automatically extract the terms that are the subject of the positive or negative opinion (such as price or customer service) and that are frequently commented on. Second, we derive a Reverse-Distance-Weighting method to map the attributes to the related positive and negative opinions in the text. Third, the resulting high-dimensional feature vectors are visualized in a new summary representation that provides a quick overview. We also cluster the reviews according to the similarity of the comments. Special thumbnails are used to provide insight into the composition of the clusters and their relationship. In addition, an interactive circular correlation map is provided to allow analysts to detect the relationships of the comments to other important attributes and the scores. We have applied these techniques to customer comments from real-world online stores and product reviews from web sites to identify the strength and problems of different products and services, and show the potential of our technique.</dcterms:abstract>
    <dc:creator>Janetzko, Halldor</dc:creator>
    <dc:creator>Oelke, Daniela</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:12:25Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6392/1/Camera_ready_Ming_Hao_VAST09.pdf"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:title>Visual opinion analysis of customer feedback data</dcterms:title>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6392"/>
    <dc:contributor>Hao, Ming C.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen