Publikation:

Helmet Use Detection of Tracked Motorcycles Using CNN-Based Multi-Task Learning

Lade...
Vorschaubild

Dateien

Lin_2-16ksnw6g1ivnm8.pdf
Lin_2-16ksnw6g1ivnm8.pdfGröße: 2.2 MBDownloads: 1243

Datum

2020

Autor:innen

Deng, Jeremiah D.
Albers, Deike
Siebert, Felix Wilhelm

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Access. Institute of Electrical and Electronics Engineers (IEEE). 2020, 8, pp. 162073-162084. eISSN 2169-3536. Available under: doi: 10.1109/ACCESS.2020.3021357

Zusammenfassung

Automated detection of motorcycle helmet use through video surveillance can facilitate efficient education and enforcement campaigns that increase road safety. However, existing detection approaches have a number of shortcomings, such as the inabilities to track individual motorcycles through multiple frames, or to distinguish drivers from passengers in helmet use. Furthermore, datasets used to develop approaches are limited in terms of traffic environments and traffic density variations. In this paper, we propose a CNN-based multi-task learning (MTL) method for identifying and tracking individual motorcycles, and register rider specific helmet use. We further release the HELMET dataset, which includes 91,000 annotated frames of 10,006 individual motorcycles from 12 observation sites in Myanmar. Along with the dataset, we introduce an evaluation metric for helmet use and rider detection accuracy, which can be used as a benchmark for evaluating future detection approaches. We show that the use of MTL for concurrent visual similarity learning and helmet use classification improves the efficiency of our approach compared to earlier studies, allowing a processing speed of more than 8 FPS on consumer hardware, and a weighted average F-measure of 67.3% for detecting the number of riders and helmet use of tracked motorcycles. Our work demonstrates the capability of deep learning as a highly accurate and resource efficient approach to collect critical road safety related data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Deep learning, traffic surveillance, motorcycle safety, helmet use detection, tracking

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LIN, Hanhe, Jeremiah D. DENG, Deike ALBERS, Felix Wilhelm SIEBERT, 2020. Helmet Use Detection of Tracked Motorcycles Using CNN-Based Multi-Task Learning. In: IEEE Access. Institute of Electrical and Electronics Engineers (IEEE). 2020, 8, pp. 162073-162084. eISSN 2169-3536. Available under: doi: 10.1109/ACCESS.2020.3021357
BibTex
@article{Lin2020Helme-51046,
  year={2020},
  doi={10.1109/ACCESS.2020.3021357},
  title={Helmet Use Detection of Tracked Motorcycles Using CNN-Based Multi-Task Learning},
  volume={8},
  journal={IEEE Access},
  pages={162073--162084},
  author={Lin, Hanhe and Deng, Jeremiah D. and Albers, Deike and Siebert, Felix Wilhelm}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51046">
    <dcterms:issued>2020</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51046"/>
    <dc:contributor>Albers, Deike</dc:contributor>
    <dcterms:abstract xml:lang="eng">Automated detection of motorcycle helmet use through video surveillance can facilitate efficient education and enforcement campaigns that increase road safety. However, existing detection approaches have a number of shortcomings, such as the inabilities to track individual motorcycles through multiple frames, or to distinguish drivers from passengers in helmet use. Furthermore, datasets used to develop approaches are limited in terms of traffic environments and traffic density variations. In this paper, we propose a CNN-based multi-task learning (MTL) method for identifying and tracking individual motorcycles, and register rider specific helmet use. We further release the HELMET dataset, which includes 91,000 annotated frames of 10,006 individual motorcycles from 12 observation sites in Myanmar. Along with the dataset, we introduce an evaluation metric for helmet use and rider detection accuracy, which can be used as a benchmark for evaluating future detection approaches. We show that the use of MTL for concurrent visual similarity learning and helmet use classification improves the efficiency of our approach compared to earlier studies, allowing a processing speed of more than 8 FPS on consumer hardware, and a weighted average F-measure of 67.3% for detecting the number of riders and helmet use of tracked motorcycles. Our work demonstrates the capability of deep learning as a highly accurate and resource efficient approach to collect critical road safety related data.</dcterms:abstract>
    <dc:contributor>Siebert, Felix Wilhelm</dc:contributor>
    <dc:creator>Deng, Jeremiah D.</dc:creator>
    <dc:contributor>Deng, Jeremiah D.</dc:contributor>
    <dc:creator>Albers, Deike</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51046/1/Lin_2-16ksnw6g1ivnm8.pdf"/>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dc:creator>Siebert, Felix Wilhelm</dc:creator>
    <dc:language>eng</dc:language>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-28T08:00:11Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-28T08:00:11Z</dcterms:available>
    <dcterms:title>Helmet Use Detection of Tracked Motorcycles Using CNN-Based Multi-Task Learning</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51046/1/Lin_2-16ksnw6g1ivnm8.pdf"/>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen