Publikation:

Generalised power series determined by linear recurrence relations

Lade...
Vorschaubild

Dateien

Krapp_2-16leuwid84jhh2.pdf
Krapp_2-16leuwid84jhh2.pdfGröße: 1.25 MBDownloads: 3

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Algebra. Elsevier. 2025, 681, S. 152-189. ISSN 0021-8693. eISSN 1090-266X. Verfügbar unter: doi: 10.1016/j.jalgebra.2025.05.012

Zusammenfassung

In 1882, Kronecker established that a given univariate formal Laurent series over a field can be expressed as a fraction of two univariate polynomials if and only if the coefficients of the series satisfy a linear recurrence relation. We introduce the notion of generalised linear recurrence relations for power series with exponents in an arbitrary ordered abelian group, and generalise Kronecker's original result. In particular, we obtain criteria for determining whether a multivariate formal Laurent series lies in the fraction field of the corresponding polynomial ring. Moreover, we study distinguished algebraic substructures of a power series field, which are determined by generalised linear recurrence relations. In particular, we identify generalised linear recurrence relations that determine power series fields satisfying additional properties which are essential for the study of their automorphism groups.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Generalised formal power series, Rational function fields, Hahn fields, Rayner fields, Linear recurrence, Lifiting properties, Automorphism groups

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KRAPP, Lothar Sebastian, Salma KUHLMANN, Michele SERRA, 2025. Generalised power series determined by linear recurrence relations. In: Journal of Algebra. Elsevier. 2025, 681, S. 152-189. ISSN 0021-8693. eISSN 1090-266X. Verfügbar unter: doi: 10.1016/j.jalgebra.2025.05.012
BibTex
@article{Krapp2025-11Gener-73692,
  title={Generalised power series determined by linear recurrence relations},
  year={2025},
  doi={10.1016/j.jalgebra.2025.05.012},
  volume={681},
  issn={0021-8693},
  journal={Journal of Algebra},
  pages={152--189},
  author={Krapp, Lothar Sebastian and Kuhlmann, Salma and Serra, Michele}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73692">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73692"/>
    <dcterms:issued>2025-11</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Serra, Michele</dc:contributor>
    <dc:contributor>Krapp, Lothar Sebastian</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73692/1/Krapp_2-16leuwid84jhh2.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-25T06:01:47Z</dc:date>
    <dc:creator>Serra, Michele</dc:creator>
    <dc:creator>Kuhlmann, Salma</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Kuhlmann, Salma</dc:contributor>
    <dc:creator>Krapp, Lothar Sebastian</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73692/1/Krapp_2-16leuwid84jhh2.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Generalised power series determined by linear recurrence relations</dcterms:title>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-25T06:01:47Z</dcterms:available>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract>In 1882, Kronecker established that a given univariate formal Laurent series over a field can be expressed as a fraction of two univariate polynomials if and only if the coefficients of the series satisfy a linear recurrence relation. We introduce the notion of generalised linear recurrence relations for power series with exponents in an arbitrary ordered abelian group, and generalise Kronecker's original result. In particular, we obtain criteria for determining whether a multivariate formal Laurent series lies in the fraction field of the corresponding polynomial ring. Moreover, we study distinguished algebraic substructures of a power series field, which are determined by generalised linear recurrence relations. In particular, we identify generalised linear recurrence relations that determine power series fields satisfying additional properties which are essential for the study of their automorphism groups.</dcterms:abstract>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen