Publikation: Generalised power series determined by linear recurrence relations
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In 1882, Kronecker established that a given univariate formal Laurent series over a field can be expressed as a fraction of two univariate polynomials if and only if the coefficients of the series satisfy a linear recurrence relation. We introduce the notion of generalised linear recurrence relations for power series with exponents in an arbitrary ordered abelian group, and generalise Kronecker's original result. In particular, we obtain criteria for determining whether a multivariate formal Laurent series lies in the fraction field of the corresponding polynomial ring. Moreover, we study distinguished algebraic substructures of a power series field, which are determined by generalised linear recurrence relations. In particular, we identify generalised linear recurrence relations that determine power series fields satisfying additional properties which are essential for the study of their automorphism groups.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KRAPP, Lothar Sebastian, Salma KUHLMANN, Michele SERRA, 2025. Generalised power series determined by linear recurrence relations. In: Journal of Algebra. Elsevier. 2025, 681, S. 152-189. ISSN 0021-8693. eISSN 1090-266X. Verfügbar unter: doi: 10.1016/j.jalgebra.2025.05.012BibTex
@article{Krapp2025-11Gener-73692, title={Generalised power series determined by linear recurrence relations}, year={2025}, doi={10.1016/j.jalgebra.2025.05.012}, volume={681}, issn={0021-8693}, journal={Journal of Algebra}, pages={152--189}, author={Krapp, Lothar Sebastian and Kuhlmann, Salma and Serra, Michele} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73692"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73692"/> <dcterms:issued>2025-11</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Serra, Michele</dc:contributor> <dc:contributor>Krapp, Lothar Sebastian</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73692/1/Krapp_2-16leuwid84jhh2.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-25T06:01:47Z</dc:date> <dc:creator>Serra, Michele</dc:creator> <dc:creator>Kuhlmann, Salma</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:creator>Krapp, Lothar Sebastian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73692/1/Krapp_2-16leuwid84jhh2.pdf"/> <dc:language>eng</dc:language> <dcterms:title>Generalised power series determined by linear recurrence relations</dcterms:title> <dc:rights>Attribution 4.0 International</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-25T06:01:47Z</dcterms:available> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract>In 1882, Kronecker established that a given univariate formal Laurent series over a field can be expressed as a fraction of two univariate polynomials if and only if the coefficients of the series satisfy a linear recurrence relation. We introduce the notion of generalised linear recurrence relations for power series with exponents in an arbitrary ordered abelian group, and generalise Kronecker's original result. In particular, we obtain criteria for determining whether a multivariate formal Laurent series lies in the fraction field of the corresponding polynomial ring. Moreover, we study distinguished algebraic substructures of a power series field, which are determined by generalised linear recurrence relations. In particular, we identify generalised linear recurrence relations that determine power series fields satisfying additional properties which are essential for the study of their automorphism groups.</dcterms:abstract> </rdf:Description> </rdf:RDF>