Publikation:

VIANA : Visual Interactive Annotation of Argumentation

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CHANG, Remco, ed. and others. 2019 IEEE Conference on Visual Analytics Science and Technology, proceedings. Piscataway, NJ: IEEE, 2019, pp. 11-22. ISBN 978-1-72812-284-7. Available under: doi: 10.1109/VAST47406.2019.8986917

Zusammenfassung

Argumentation Mining addresses the challenging tasks of identifying boundaries of argumentative text fragments and extracting their relationships. Fully automated solutions do not reach satisfactory accuracy due to their insufficient incorporation of semantics and domain knowledge. Therefore, experts currently rely on time-consuming manual annotations. In this paper, we present a visual analytics system that augments the manual annotation process by automatically suggesting which text fragments to annotate next. The accuracy of those suggestions is improved over time by incorporating linguistic knowledge and language modeling to learn a measure of argument similarity from user interactions. Based on a long-term collaboration with domain experts, we identify and model five high-level analysis tasks. We enable close reading and note-taking, annotation of arguments, argument reconstruction, extraction of argument relations, and exploration of argument graphs. To avoid context switches, we transition between all views through seamless morphing, visually anchoring all text- and graph-based layers. We evaluate our system with a two-stage expert user study based on a corpus of presidential debates. The results show that experts prefer our system over existing solutions due to the speedup provided by the automatic suggestions and the tight integration between text and graph views.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Argumentation annotation, machine learning, user interaction, layered interfaces, semantic transitions

Konferenz

2019 IEEE Conference on Visual Analytics Science and Technology (VAST), 20. Okt. 2019 - 25. Okt. 2019, Vancouver, BC, Canada
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPERRLE, Fabian, Rita SEVASTJANOVA, Rebecca KEHLBECK, Mennatallah EL-ASSADY, 2019. VIANA : Visual Interactive Annotation of Argumentation. 2019 IEEE Conference on Visual Analytics Science and Technology (VAST). Vancouver, BC, Canada, 20. Okt. 2019 - 25. Okt. 2019. In: CHANG, Remco, ed. and others. 2019 IEEE Conference on Visual Analytics Science and Technology, proceedings. Piscataway, NJ: IEEE, 2019, pp. 11-22. ISBN 978-1-72812-284-7. Available under: doi: 10.1109/VAST47406.2019.8986917
BibTex
@inproceedings{Sperrle2019VIANA-51336,
  year={2019},
  doi={10.1109/VAST47406.2019.8986917},
  title={VIANA : Visual Interactive Annotation of Argumentation},
  isbn={978-1-72812-284-7},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2019 IEEE Conference on Visual Analytics Science and Technology,  proceedings},
  pages={11--22},
  editor={Chang, Remco},
  author={Sperrle, Fabian and Sevastjanova, Rita and Kehlbeck, Rebecca and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51336">
    <dc:creator>Sperrle, Fabian</dc:creator>
    <dc:creator>Kehlbeck, Rebecca</dc:creator>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-13T13:49:50Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2019</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Argumentation Mining addresses the challenging tasks of identifying boundaries of argumentative text fragments and extracting their relationships. Fully automated solutions do not reach satisfactory accuracy due to their insufficient incorporation of semantics and domain knowledge. Therefore, experts currently rely on time-consuming manual annotations. In this paper, we present a visual analytics system that augments the manual annotation process by automatically suggesting which text fragments to annotate next. The accuracy of those suggestions is improved over time by incorporating linguistic knowledge and language modeling to learn a measure of argument similarity from user interactions. Based on a long-term collaboration with domain experts, we identify and model five high-level analysis tasks. We enable close reading and note-taking, annotation of arguments, argument reconstruction, extraction of argument relations, and exploration of argument graphs. To avoid context switches, we transition between all views through seamless morphing, visually anchoring all text- and graph-based layers. We evaluate our system with a two-stage expert user study based on a corpus of presidential debates. The results show that experts prefer our system over existing solutions due to the speedup provided by the automatic suggestions and the tight integration between text and graph views.</dcterms:abstract>
    <dc:contributor>Kehlbeck, Rebecca</dc:contributor>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:creator>Sevastjanova, Rita</dc:creator>
    <dcterms:title>VIANA : Visual Interactive Annotation of Argumentation</dcterms:title>
    <dc:contributor>Sperrle, Fabian</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-13T13:49:50Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51336"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen