Publikation: VIANA : Visual Interactive Annotation of Argumentation
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Argumentation Mining addresses the challenging tasks of identifying boundaries of argumentative text fragments and extracting their relationships. Fully automated solutions do not reach satisfactory accuracy due to their insufficient incorporation of semantics and domain knowledge. Therefore, experts currently rely on time-consuming manual annotations. In this paper, we present a visual analytics system that augments the manual annotation process by automatically suggesting which text fragments to annotate next. The accuracy of those suggestions is improved over time by incorporating linguistic knowledge and language modeling to learn a measure of argument similarity from user interactions. Based on a long-term collaboration with domain experts, we identify and model five high-level analysis tasks. We enable close reading and note-taking, annotation of arguments, argument reconstruction, extraction of argument relations, and exploration of argument graphs. To avoid context switches, we transition between all views through seamless morphing, visually anchoring all text- and graph-based layers. We evaluate our system with a two-stage expert user study based on a corpus of presidential debates. The results show that experts prefer our system over existing solutions due to the speedup provided by the automatic suggestions and the tight integration between text and graph views.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SPERRLE, Fabian, Rita SEVASTJANOVA, Rebecca KEHLBECK, Mennatallah EL-ASSADY, 2019. VIANA : Visual Interactive Annotation of Argumentation. 2019 IEEE Conference on Visual Analytics Science and Technology (VAST). Vancouver, BC, Canada, 20. Okt. 2019 - 25. Okt. 2019. In: CHANG, Remco, ed. and others. 2019 IEEE Conference on Visual Analytics Science and Technology, proceedings. Piscataway, NJ: IEEE, 2019, pp. 11-22. ISBN 978-1-72812-284-7. Available under: doi: 10.1109/VAST47406.2019.8986917BibTex
@inproceedings{Sperrle2019VIANA-51336, year={2019}, doi={10.1109/VAST47406.2019.8986917}, title={VIANA : Visual Interactive Annotation of Argumentation}, isbn={978-1-72812-284-7}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2019 IEEE Conference on Visual Analytics Science and Technology, proceedings}, pages={11--22}, editor={Chang, Remco}, author={Sperrle, Fabian and Sevastjanova, Rita and Kehlbeck, Rebecca and El-Assady, Mennatallah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51336"> <dc:creator>Sperrle, Fabian</dc:creator> <dc:creator>Kehlbeck, Rebecca</dc:creator> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-13T13:49:50Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2019</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Argumentation Mining addresses the challenging tasks of identifying boundaries of argumentative text fragments and extracting their relationships. Fully automated solutions do not reach satisfactory accuracy due to their insufficient incorporation of semantics and domain knowledge. Therefore, experts currently rely on time-consuming manual annotations. In this paper, we present a visual analytics system that augments the manual annotation process by automatically suggesting which text fragments to annotate next. The accuracy of those suggestions is improved over time by incorporating linguistic knowledge and language modeling to learn a measure of argument similarity from user interactions. Based on a long-term collaboration with domain experts, we identify and model five high-level analysis tasks. We enable close reading and note-taking, annotation of arguments, argument reconstruction, extraction of argument relations, and exploration of argument graphs. To avoid context switches, we transition between all views through seamless morphing, visually anchoring all text- and graph-based layers. We evaluate our system with a two-stage expert user study based on a corpus of presidential debates. The results show that experts prefer our system over existing solutions due to the speedup provided by the automatic suggestions and the tight integration between text and graph views.</dcterms:abstract> <dc:contributor>Kehlbeck, Rebecca</dc:contributor> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:creator>Sevastjanova, Rita</dc:creator> <dcterms:title>VIANA : Visual Interactive Annotation of Argumentation</dcterms:title> <dc:contributor>Sperrle, Fabian</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-13T13:49:50Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51336"/> </rdf:Description> </rdf:RDF>