Publikation: Fishing Vizzard : An Interactive Visual Analytics Tool to Identify Suspicious Fishing Behavior
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present Fishing Vizzard, an interactive visual analytics application to address the challenge of identifying illegal fishing behavior as posed by the VAST 2024 Mini-Challenge 2. Our solution integrates different visualizations applied to the dataset. Among others, the visualizations include a recursive pixel visualization to track and compare vessel locations across time and a grid of pie charts to investigate plausible fishing cargo for different vessels. Combining these visualizations in our interactive tool provides an understanding of the fishing community in Oceanus and helps find suspicious activities and entities (for example, the vessel Catfish Capturer that spent a lot of time in fishing preserves which is a behavior also shown by a convicted vessel). A demo of Fishing Vizzard is available at https://group2.vast24.dbvis.de.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BIDLINGMAIER, Antonella, Julian JANDELEIT, Fred KUNZE, Lisa-Maria REUTLINGER, Tolga TUNCER, Udo SCHLEGEL, Daniel A. KEIM, 2024. Fishing Vizzard : An Interactive Visual Analytics Tool to Identify Suspicious Fishing Behavior. 2024 IEEE Visual Analytics Science and Technology VAST Challenge. St. Pete Beach, FL, USA, 13. Okt. 2025. In: 2024 IEEE Visual Analytics Science and Technology VAST Challenge. Piscataway, NJ: IEEE, 2024, S. 26-27. ISBN 979-8-3315-1727-4. Verfügbar unter: doi: 10.1109/vastchallenge64683.2024.00017BibTex
@inproceedings{Bidlingmaier2024-10-13Fishi-71862, year={2024}, doi={10.1109/vastchallenge64683.2024.00017}, title={Fishing Vizzard : An Interactive Visual Analytics Tool to Identify Suspicious Fishing Behavior}, isbn={979-8-3315-1727-4}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2024 IEEE Visual Analytics Science and Technology VAST Challenge}, pages={26--27}, author={Bidlingmaier, Antonella and Jandeleit, Julian and Kunze, Fred and Reutlinger, Lisa-Maria and Tuncer, Tolga and Schlegel, Udo and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71862"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:abstract>We present Fishing Vizzard, an interactive visual analytics application to address the challenge of identifying illegal fishing behavior as posed by the VAST 2024 Mini-Challenge 2. Our solution integrates different visualizations applied to the dataset. Among others, the visualizations include a recursive pixel visualization to track and compare vessel locations across time and a grid of pie charts to investigate plausible fishing cargo for different vessels. Combining these visualizations in our interactive tool provides an understanding of the fishing community in Oceanus and helps find suspicious activities and entities (for example, the vessel Catfish Capturer that spent a lot of time in fishing preserves which is a behavior also shown by a convicted vessel). A demo of Fishing Vizzard is available at https://group2.vast24.dbvis.de.</dcterms:abstract> <dc:creator>Reutlinger, Lisa-Maria</dc:creator> <dc:contributor>Tuncer, Tolga</dc:contributor> <dc:creator>Jandeleit, Julian</dc:creator> <dc:creator>Kunze, Fred</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:creator>Bidlingmaier, Antonella</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71862"/> <dc:contributor>Bidlingmaier, Antonella</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Jandeleit, Julian</dc:contributor> <dc:creator>Tuncer, Tolga</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-14T10:12:41Z</dcterms:available> <dc:contributor>Reutlinger, Lisa-Maria</dc:contributor> <dcterms:issued>2024-10-13</dcterms:issued> <dc:creator>Schlegel, Udo</dc:creator> <dcterms:title>Fishing Vizzard : An Interactive Visual Analytics Tool to Identify Suspicious Fishing Behavior</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-14T10:12:41Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kunze, Fred</dc:contributor> </rdf:Description> </rdf:RDF>