Publikation:

Dynamical Stability of Non-Constant Equilibria for the Compressible Navier-Stokes Equations in Eulerian Coordinates

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Communications in Mathematical Physics. 2014, 328(2), pp. 809-847. ISSN 0010-3616. eISSN 1432-0916. Available under: doi: 10.1007/s00220-014-2023-z

Zusammenfassung

In this paper we establish global existence and uniqueness of strong solutions to the non-isothermal compressible Navier–Stokes equations in bounded domains. The initial data have to be near equilibria that may be non-constant due to considering large external forces. We are able to show exponential stability of equilibria in the phase space and, above all, to study the problem in Eulerian coordinates. The latter seems to be a novelty, since in works by other authors, global strong L p -solutions have been investigated only in Lagrangian coordinates; Eulerian coordinates are even declared as impossible to deal with. The proof is based on a careful derivation and study of the associated linear problem.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KOTSCHOTE, Matthias, 2014. Dynamical Stability of Non-Constant Equilibria for the Compressible Navier-Stokes Equations in Eulerian Coordinates. In: Communications in Mathematical Physics. 2014, 328(2), pp. 809-847. ISSN 0010-3616. eISSN 1432-0916. Available under: doi: 10.1007/s00220-014-2023-z
BibTex
@article{Kotschote2014Dynam-29975,
  year={2014},
  doi={10.1007/s00220-014-2023-z},
  title={Dynamical Stability of Non-Constant Equilibria for the Compressible Navier-Stokes Equations in Eulerian Coordinates},
  number={2},
  volume={328},
  issn={0010-3616},
  journal={Communications in Mathematical Physics},
  pages={809--847},
  author={Kotschote, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29975">
    <dcterms:title>Dynamical Stability of Non-Constant Equilibria for the Compressible Navier-Stokes Equations in Eulerian Coordinates</dcterms:title>
    <dcterms:issued>2014</dcterms:issued>
    <dc:contributor>Kotschote, Matthias</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:58:10Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">In this paper we establish global existence and uniqueness of strong solutions to the non-isothermal compressible Navier–Stokes equations in bounded domains. The initial data have to be near equilibria that may be non-constant due to considering large external forces. We are able to show exponential stability of equilibria in the phase space and, above all, to study the problem in Eulerian coordinates. The latter seems to be a novelty, since in works by other authors, global strong L &lt;sub&gt;p&lt;/sub&gt; -solutions have been investigated only in Lagrangian coordinates; Eulerian coordinates are even declared as impossible to deal with. The proof is based on a careful derivation and study of the associated linear problem.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Kotschote, Matthias</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29975"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:58:10Z</dc:date>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen