Dynamical Stability of Non-Constant Equilibria for the Compressible Navier-Stokes Equations in Eulerian Coordinates
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper we establish global existence and uniqueness of strong solutions to the non-isothermal compressible Navier–Stokes equations in bounded domains. The initial data have to be near equilibria that may be non-constant due to considering large external forces. We are able to show exponential stability of equilibria in the phase space and, above all, to study the problem in Eulerian coordinates. The latter seems to be a novelty, since in works by other authors, global strong L p -solutions have been investigated only in Lagrangian coordinates; Eulerian coordinates are even declared as impossible to deal with. The proof is based on a careful derivation and study of the associated linear problem.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KOTSCHOTE, Matthias, 2014. Dynamical Stability of Non-Constant Equilibria for the Compressible Navier-Stokes Equations in Eulerian Coordinates. In: Communications in Mathematical Physics. 2014, 328(2), pp. 809-847. ISSN 0010-3616. eISSN 1432-0916. Available under: doi: 10.1007/s00220-014-2023-zBibTex
@article{Kotschote2014Dynam-29975, year={2014}, doi={10.1007/s00220-014-2023-z}, title={Dynamical Stability of Non-Constant Equilibria for the Compressible Navier-Stokes Equations in Eulerian Coordinates}, number={2}, volume={328}, issn={0010-3616}, journal={Communications in Mathematical Physics}, pages={809--847}, author={Kotschote, Matthias} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29975"> <dcterms:title>Dynamical Stability of Non-Constant Equilibria for the Compressible Navier-Stokes Equations in Eulerian Coordinates</dcterms:title> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Kotschote, Matthias</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:58:10Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">In this paper we establish global existence and uniqueness of strong solutions to the non-isothermal compressible Navier–Stokes equations in bounded domains. The initial data have to be near equilibria that may be non-constant due to considering large external forces. We are able to show exponential stability of equilibria in the phase space and, above all, to study the problem in Eulerian coordinates. The latter seems to be a novelty, since in works by other authors, global strong L <sub>p</sub> -solutions have been investigated only in Lagrangian coordinates; Eulerian coordinates are even declared as impossible to deal with. The proof is based on a careful derivation and study of the associated linear problem.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Kotschote, Matthias</dc:creator> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29975"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-02-23T14:58:10Z</dc:date> </rdf:Description> </rdf:RDF>