Publikation: Visual Exploration of Local Interest Points in Sets of Time Series
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Visual analysis of time series data is an important, yet challenging task with many application examples in fields such as financial or news stream data analysis. Many visual time series analysis approaches consider a global perspective on the time series. Fewer approaches consider visual analysis of local patterns in time series, and often rely on interactive specification of the local area of interest. We present initial results of an approach that is based on automatic detection of local interest points. We follow an overview-first approach to find useful parameters for the interest point detection, and details-on-demand to relate the found patterns. We present initial results and detail possible extensions of the approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SHARALIEVA, Lyubka, Tobias SCHRECK, Franz WANNER, Jürgen BERNARD, Tobias RUPPERT, Tatiana von LANDESBERGER, Benjamin BUSTOS, 2012. Visual Exploration of Local Interest Points in Sets of Time Series. 2012 IEEE Conference on Visual Analytics Science and Technology (VAST). Seattle, WA, USA, 14. Okt. 2012 - 19. Okt. 2012. In: 2012 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE, 2012, pp. 239-240. ISBN 978-1-4673-4752-5. Available under: doi: 10.1109/VAST.2012.6400534BibTex
@inproceedings{Sharalieva2012-10Visua-22541, year={2012}, doi={10.1109/VAST.2012.6400534}, title={Visual Exploration of Local Interest Points in Sets of Time Series}, isbn={978-1-4673-4752-5}, publisher={IEEE}, booktitle={2012 IEEE Conference on Visual Analytics Science and Technology (VAST)}, pages={239--240}, author={Sharalieva, Lyubka and Schreck, Tobias and Wanner, Franz and Bernard, Jürgen and Ruppert, Tobias and Landesberger, Tatiana von and Bustos, Benjamin} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22541"> <dc:contributor>Bustos, Benjamin</dc:contributor> <dc:contributor>Landesberger, Tatiana von</dc:contributor> <dc:language>eng</dc:language> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22541"/> <dcterms:issued>2012-10</dcterms:issued> <dc:contributor>Sharalieva, Lyubka</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:bibliographicCitation>IEEE Conference on Visual Analytics Science & Technology 2012 : Seattle, Washington, USA, 14 - 19 October 2012 ; Proceedings / Giuseppe Santucci and Matthew Ward (eds.). - Piscataway, NJ : IEEE, 2012, S. 239-240. - ISBN 978-1-4673-4753-2</dcterms:bibliographicCitation> <dc:contributor>Bernard, Jürgen</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Wanner, Franz</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-25T08:13:52Z</dc:date> <dc:contributor>Ruppert, Tobias</dc:contributor> <dc:contributor>Wanner, Franz</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-25T08:13:52Z</dcterms:available> <dcterms:abstract xml:lang="eng">Visual analysis of time series data is an important, yet challenging task with many application examples in fields such as financial or news stream data analysis. Many visual time series analysis approaches consider a global perspective on the time series. Fewer approaches consider visual analysis of local patterns in time series, and often rely on interactive specification of the local area of interest. We present initial results of an approach that is based on automatic detection of local interest points. We follow an overview-first approach to find useful parameters for the interest point detection, and details-on-demand to relate the found patterns. We present initial results and detail possible extensions of the approach.</dcterms:abstract> <dc:creator>Schreck, Tobias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Bernard, Jürgen</dc:creator> <dcterms:title>Visual Exploration of Local Interest Points in Sets of Time Series</dcterms:title> <dc:creator>Landesberger, Tatiana von</dc:creator> <dc:creator>Bustos, Benjamin</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Sharalieva, Lyubka</dc:creator> <dc:creator>Ruppert, Tobias</dc:creator> </rdf:Description> </rdf:RDF>