Publikation: Additive noise destroys the random attractor close to bifurcation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We provide an example for stabilization by noise. Due to the presence of higher order differential operators our approach does not rely on monotonicity arguments, i.e. the preserved order of solutions. Moreover, as the noise is highly degenerate mixing properties of the system might not be available. In our examples already a scalar additive noise destroys the complexity of a high-dimensional deterministic attractor of a PDE on an unbounded domain. The main result shows that by adding a certain amount of noise all trajectories converge to a single stationary solution. Close to bifurcation there is a lower bound on the amount of noise necessary for this stabilization, which depends on the distance to bifurcation, and the presence of small (but not arbitrarily small) noise already suffices. We focus on stochastic PDEs posed on unbounded domains without any decay condition at infinity. This setting allows for spatially constant or periodic solutions of arbitrary period. But we need to work in weighted spaces and establish the existence of random attractors in that setting first.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BIANCHI, Luigi Amedeo, Dirk BLÖMKER, Meihua YANG, 2016. Additive noise destroys the random attractor close to bifurcation. In: Nonlinearity. 2016, 29(12), pp. 3934-3960. ISSN 0951-7715. eISSN 1361-6544. Available under: doi: 10.1088/0951-7715/29/12/3934BibTex
@article{Bianchi2016-12-01Addit-44905, year={2016}, doi={10.1088/0951-7715/29/12/3934}, title={Additive noise destroys the random attractor close to bifurcation}, number={12}, volume={29}, issn={0951-7715}, journal={Nonlinearity}, pages={3934--3960}, author={Bianchi, Luigi Amedeo and Blömker, Dirk and Yang, Meihua} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44905"> <dc:contributor>Blömker, Dirk</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T11:34:41Z</dcterms:available> <dc:contributor>Bianchi, Luigi Amedeo</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We provide an example for stabilization by noise. Due to the presence of higher order differential operators our approach does not rely on monotonicity arguments, i.e. the preserved order of solutions. Moreover, as the noise is highly degenerate mixing properties of the system might not be available. In our examples already a scalar additive noise destroys the complexity of a high-dimensional deterministic attractor of a PDE on an unbounded domain. The main result shows that by adding a certain amount of noise all trajectories converge to a single stationary solution. Close to bifurcation there is a lower bound on the amount of noise necessary for this stabilization, which depends on the distance to bifurcation, and the presence of small (but not arbitrarily small) noise already suffices. We focus on stochastic PDEs posed on unbounded domains without any decay condition at infinity. This setting allows for spatially constant or periodic solutions of arbitrary period. But we need to work in weighted spaces and establish the existence of random attractors in that setting first.</dcterms:abstract> <dcterms:issued>2016-12-01</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-07T11:34:41Z</dc:date> <dc:creator>Blömker, Dirk</dc:creator> <dc:contributor>Yang, Meihua</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44905"/> <dc:creator>Bianchi, Luigi Amedeo</dc:creator> <dc:language>eng</dc:language> <dc:creator>Yang, Meihua</dc:creator> <dcterms:title>Additive noise destroys the random attractor close to bifurcation</dcterms:title> </rdf:Description> </rdf:RDF>