Publikation: Pathwise mild solutions for quasilinear stochastic partial differential equations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Stochastic partial differential equations (SPDEs) have become a key modeling tool in applications. Yet, there are many classes of SPDEs, where the existence and regularity theory for solutions is not completely developed. Here we contribute to this aspect and prove the existence of mild solutions for a broad class of quasilinear Cauchy problems, including - among others - cross-diffusion systems as a key application. Our solutions are local-in-time and are derived via a fixed point argument in suitable function spaces. The key idea is to combine in a suitable way the classical theory of deterministic quasilinear parabolic partial differential equations (PDEs) with recent theory of evolution semigroups. We also show, how to apply our theory to the Shigesada-Kawasaki-Teramoto (SKT) model. Furthermore, we provide examples of blow-up and ill-posed operators, which can occur after finite-time showing that solutions can only be local-in-time for general quasilinear SPDEs, while they might be global-in-time for special subclasses of problems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KUEHN, Christian, Alexandra BLESSING-NEAMTU, 2020. Pathwise mild solutions for quasilinear stochastic partial differential equations. In: Journal of Differential Equations. Elsevier. 2020, 269(3), pp. 2185-2227. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2020.01.032BibTex
@article{Kuehn2020Pathw-53776, year={2020}, doi={10.1016/j.jde.2020.01.032}, title={Pathwise mild solutions for quasilinear stochastic partial differential equations}, number={3}, volume={269}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={2185--2227}, author={Kuehn, Christian and Blessing-Neamtu, Alexandra} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53776"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53776"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Pathwise mild solutions for quasilinear stochastic partial differential equations</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Kuehn, Christian</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">Stochastic partial differential equations (SPDEs) have become a key modeling tool in applications. Yet, there are many classes of SPDEs, where the existence and regularity theory for solutions is not completely developed. Here we contribute to this aspect and prove the existence of mild solutions for a broad class of quasilinear Cauchy problems, including - among others - cross-diffusion systems as a key application. Our solutions are local-in-time and are derived via a fixed point argument in suitable function spaces. The key idea is to combine in a suitable way the classical theory of deterministic quasilinear parabolic partial differential equations (PDEs) with recent theory of evolution semigroups. We also show, how to apply our theory to the Shigesada-Kawasaki-Teramoto (SKT) model. Furthermore, we provide examples of blow-up and ill-posed operators, which can occur after finite-time showing that solutions can only be local-in-time for general quasilinear SPDEs, while they might be global-in-time for special subclasses of problems.</dcterms:abstract> <dc:contributor>Blessing-Neamtu, Alexandra</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-28T06:57:38Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dc:creator>Blessing-Neamtu, Alexandra</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-28T06:57:38Z</dc:date> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Kuehn, Christian</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>