Publikation:

Pathwise mild solutions for quasilinear stochastic partial differential equations

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Differential Equations. Elsevier. 2020, 269(3), pp. 2185-2227. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2020.01.032

Zusammenfassung

Stochastic partial differential equations (SPDEs) have become a key modeling tool in applications. Yet, there are many classes of SPDEs, where the existence and regularity theory for solutions is not completely developed. Here we contribute to this aspect and prove the existence of mild solutions for a broad class of quasilinear Cauchy problems, including - among others - cross-diffusion systems as a key application. Our solutions are local-in-time and are derived via a fixed point argument in suitable function spaces. The key idea is to combine in a suitable way the classical theory of deterministic quasilinear parabolic partial differential equations (PDEs) with recent theory of evolution semigroups. We also show, how to apply our theory to the Shigesada-Kawasaki-Teramoto (SKT) model. Furthermore, we provide examples of blow-up and ill-posed operators, which can occur after finite-time showing that solutions can only be local-in-time for general quasilinear SPDEs, while they might be global-in-time for special subclasses of problems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Quasilinear stochastic partial differential equations, Maximal local pathwise mild solution, Stochastic Shigesada-Kawasaki-Teramoto model

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KUEHN, Christian, Alexandra BLESSING-NEAMTU, 2020. Pathwise mild solutions for quasilinear stochastic partial differential equations. In: Journal of Differential Equations. Elsevier. 2020, 269(3), pp. 2185-2227. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2020.01.032
BibTex
@article{Kuehn2020Pathw-53776,
  year={2020},
  doi={10.1016/j.jde.2020.01.032},
  title={Pathwise mild solutions for quasilinear stochastic partial differential equations},
  number={3},
  volume={269},
  issn={0022-0396},
  journal={Journal of Differential Equations},
  pages={2185--2227},
  author={Kuehn, Christian and Blessing-Neamtu, Alexandra}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53776">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53776"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Pathwise mild solutions for quasilinear stochastic partial differential equations</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Kuehn, Christian</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">Stochastic partial differential equations (SPDEs) have become a key modeling tool in applications. Yet, there are many classes of SPDEs, where the existence and regularity theory for solutions is not completely developed. Here we contribute to this aspect and prove the existence of mild solutions for a broad class of quasilinear Cauchy problems, including - among others - cross-diffusion systems as a key application. Our solutions are local-in-time and are derived via a fixed point argument in suitable function spaces. The key idea is to combine in a suitable way the classical theory of deterministic quasilinear parabolic partial differential equations (PDEs) with recent theory of evolution semigroups. We also show, how to apply our theory to the Shigesada-Kawasaki-Teramoto (SKT) model. Furthermore, we provide examples of blow-up and ill-posed operators, which can occur after finite-time showing that solutions can only be local-in-time for general quasilinear SPDEs, while they might be global-in-time for special subclasses of problems.</dcterms:abstract>
    <dc:contributor>Blessing-Neamtu, Alexandra</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-28T06:57:38Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Blessing-Neamtu, Alexandra</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-05-28T06:57:38Z</dc:date>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>Kuehn, Christian</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen