Publikation:

Volume preserving curvature flows in Lorentzian manifolds

Lade...
Vorschaubild

Dateien

Makowski_186554.pdf
Makowski_186554.pdfGröße: 1.89 MBDownloads: 458

Datum

2011

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Volumenerhaltende Krümmungsflüsse in Lorentz Mannigfaltigkeiten
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Calculus of Variations and Partial Differential Equations. 2011, 46(1-2), pp. 213-252. ISSN 0944-2669. eISSN 1432-0835. Available under: doi: 10.1007/s00526-011-0481-0

Zusammenfassung

Let $N$ be a $(n+1)$-dimensional globally hyperbolic Lorentzian manifold with a compact Cauchy hypersurface $\mathcal{S}_0$ and $F$ a curvature function, either the mean curvature $H$, the root of the second symmetric polynomial $\si_2 = \sqrt{H_2}$ or a curvature function of class $(K^*)$, a class of curvature functions which includes the $n$-th root of the Gaussian curvature $\si_n = K^{\frac{1}{n}}$. We consider curvature flows with curvature function $F$ and a volume preserving term and prove long time existence of the flow and exponential convergence of the corresponding graphs in the $C^\infty$-topology to a hypersurface of constant $F$-curvature, provided there are barriers. Furthermore we examine stability properties and foliations of constant $F$-curvature hypersurfaces.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MAKOWSKI, Matthias, 2011. Volume preserving curvature flows in Lorentzian manifolds. In: Calculus of Variations and Partial Differential Equations. 2011, 46(1-2), pp. 213-252. ISSN 0944-2669. eISSN 1432-0835. Available under: doi: 10.1007/s00526-011-0481-0
BibTex
@article{Makowski2011Volum-18655,
  year={2011},
  doi={10.1007/s00526-011-0481-0},
  title={Volume preserving curvature flows in Lorentzian manifolds},
  number={1-2},
  volume={46},
  issn={0944-2669},
  journal={Calculus of Variations and Partial Differential Equations},
  pages={213--252},
  author={Makowski, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18655">
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:language>eng</dc:language>
    <dc:creator>Makowski, Matthias</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18655/2/Makowski_186554.pdf"/>
    <dcterms:abstract xml:lang="eng">Let $N$ be a $(n+1)$-dimensional globally hyperbolic Lorentzian manifold with a compact Cauchy hypersurface $\mathcal{S}_0$ and $F$ a curvature function, either the mean curvature $H$, the root of the second symmetric polynomial $\si_2 = \sqrt{H_2}$ or a curvature function of class $(K^*)$, a class of curvature functions which includes the $n$-th root of the Gaussian curvature $\si_n = K^{\frac{1}{n}}$. We consider curvature flows with curvature function $F$ and a volume preserving term and prove long time existence of the flow and exponential convergence of the corresponding graphs in the $C^\infty$-topology to a hypersurface of constant $F$-curvature, provided there are barriers. Furthermore we examine stability properties and foliations of constant $F$-curvature hypersurfaces.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2011</dcterms:issued>
    <dcterms:alternative>Volumenerhaltende Krümmungsflüsse in Lorentz Mannigfaltigkeiten</dcterms:alternative>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-14T23:25:06Z</dcterms:available>
    <dc:contributor>Makowski, Matthias</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-21T09:49:03Z</dc:date>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18655/2/Makowski_186554.pdf"/>
    <dcterms:bibliographicCitation>Calculus of Variations and Partial Differential Equations ; 46 (2013), 1-2. - S. 213-252</dcterms:bibliographicCitation>
    <dcterms:title>Volume preserving curvature flows in Lorentzian manifolds</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18655"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen