Publikation: Volume preserving curvature flows in Lorentzian manifolds
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Let $N$ be a $(n+1)$-dimensional globally hyperbolic Lorentzian manifold with a compact Cauchy hypersurface $\mathcal{S}_0$ and $F$ a curvature function, either the mean curvature $H$, the root of the second symmetric polynomial $\si_2 = \sqrt{H_2}$ or a curvature function of class $(K^*)$, a class of curvature functions which includes the $n$-th root of the Gaussian curvature $\si_n = K^{\frac{1}{n}}$. We consider curvature flows with curvature function $F$ and a volume preserving term and prove long time existence of the flow and exponential convergence of the corresponding graphs in the $C^\infty$-topology to a hypersurface of constant $F$-curvature, provided there are barriers. Furthermore we examine stability properties and foliations of constant $F$-curvature hypersurfaces.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MAKOWSKI, Matthias, 2011. Volume preserving curvature flows in Lorentzian manifolds. In: Calculus of Variations and Partial Differential Equations. 2011, 46(1-2), pp. 213-252. ISSN 0944-2669. eISSN 1432-0835. Available under: doi: 10.1007/s00526-011-0481-0BibTex
@article{Makowski2011Volum-18655,
year={2011},
doi={10.1007/s00526-011-0481-0},
title={Volume preserving curvature flows in Lorentzian manifolds},
number={1-2},
volume={46},
issn={0944-2669},
journal={Calculus of Variations and Partial Differential Equations},
pages={213--252},
author={Makowski, Matthias}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/18655">
<dc:rights>terms-of-use</dc:rights>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<dc:language>eng</dc:language>
<dc:creator>Makowski, Matthias</dc:creator>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18655/2/Makowski_186554.pdf"/>
<dcterms:abstract xml:lang="eng">Let $N$ be a $(n+1)$-dimensional globally hyperbolic Lorentzian manifold with a compact Cauchy hypersurface $\mathcal{S}_0$ and $F$ a curvature function, either the mean curvature $H$, the root of the second symmetric polynomial $\si_2 = \sqrt{H_2}$ or a curvature function of class $(K^*)$, a class of curvature functions which includes the $n$-th root of the Gaussian curvature $\si_n = K^{\frac{1}{n}}$. We consider curvature flows with curvature function $F$ and a volume preserving term and prove long time existence of the flow and exponential convergence of the corresponding graphs in the $C^\infty$-topology to a hypersurface of constant $F$-curvature, provided there are barriers. Furthermore we examine stability properties and foliations of constant $F$-curvature hypersurfaces.</dcterms:abstract>
<dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
<dcterms:issued>2011</dcterms:issued>
<dcterms:alternative>Volumenerhaltende Krümmungsflüsse in Lorentz Mannigfaltigkeiten</dcterms:alternative>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-01-14T23:25:06Z</dcterms:available>
<dc:contributor>Makowski, Matthias</dc:contributor>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-21T09:49:03Z</dc:date>
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/18655/2/Makowski_186554.pdf"/>
<dcterms:bibliographicCitation>Calculus of Variations and Partial Differential Equations ; 46 (2013), 1-2. - S. 213-252</dcterms:bibliographicCitation>
<dcterms:title>Volume preserving curvature flows in Lorentzian manifolds</dcterms:title>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/18655"/>
</rdf:Description>
</rdf:RDF>