Publikation:

Analytical approximations for the collapse of an empty spherical bubble

Lade...
Vorschaubild

Dateien

Obreschkow_PhysRevE.85.066303.pdf
Obreschkow_PhysRevE.85.066303.pdfGröße: 464.68 KBDownloads: 245

Datum

2012

Autor:innen

Obreschkow, Danail
Farhat, Mohamed

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Physical Review E. 2012, 85(6). ISSN 1539-3755. eISSN 1550-2376. Available under: doi: 10.1103/PhysRevE.85.066303

Zusammenfassung

The Rayleigh equation 3/2Ṙ+RR̈+pρ−1=0 with initial conditions R(0)=R0, Ṙ(0)=0 models the collapse of an empty spherical bubble of radius R(T) in an ideal, infinite liquid with far-field pressure p and density ρ. The solution for r≡R/R0 as a function of time t≡T/Tc, where R(Tc)≡0, is independent of R0, p, and ρ. While no closed-form expression for r(t) is known, we find that r0(t)=(1−t2)2/5 approximates r(t) with an error below 1%. A systematic development in orders of t2 further yields the 0.001% approximation r*(t)=r0(t)[1−a1 Li2.21(t2)], where a1≈−0.018 320 99 is a constant and Li is the polylogarithm. The usefulness of these approximations is demonstrated by comparison to high-precision cavitation data obtained in microgravity.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690OBRESCHKOW, Danail, Martin BRUDERER, Mohamed FARHAT, 2012. Analytical approximations for the collapse of an empty spherical bubble. In: Physical Review E. 2012, 85(6). ISSN 1539-3755. eISSN 1550-2376. Available under: doi: 10.1103/PhysRevE.85.066303
BibTex
@article{Obreschkow2012Analy-22485,
  year={2012},
  doi={10.1103/PhysRevE.85.066303},
  title={Analytical approximations for the collapse of an empty spherical bubble},
  number={6},
  volume={85},
  issn={1539-3755},
  journal={Physical Review E},
  author={Obreschkow, Danail and Bruderer, Martin and Farhat, Mohamed}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22485">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:bibliographicCitation>Physical review E ; 85 (2012). - 066303</dcterms:bibliographicCitation>
    <dcterms:title>Analytical approximations for the collapse of an empty spherical bubble</dcterms:title>
    <dc:creator>Obreschkow, Danail</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22485"/>
    <dcterms:abstract xml:lang="eng">The Rayleigh equation 3/2Ṙ+RR̈+pρ&lt;sup&gt;−1&lt;/sup&gt;=0 with initial conditions R(0)=R&lt;sub&gt;0&lt;/sub&gt;, Ṙ(0)=0 models the collapse of an empty spherical bubble of radius R(T) in an ideal, infinite liquid with far-field pressure p and density ρ. The solution for r≡R/R&lt;sub&gt;0&lt;/sub&gt; as a function of time t≡T/T&lt;sub&gt;c&lt;/sub&gt;, where R(T&lt;sub&gt;c&lt;/sub&gt;)≡0, is independent of R&lt;sub&gt;0&lt;/sub&gt;, p, and ρ. While no closed-form expression for r(t) is known, we find that r&lt;sub&gt;0&lt;/sub&gt;(t)=(1−t&lt;sup&gt;2&lt;/sup&gt;)&lt;sup&gt;2/5&lt;/sup&gt; approximates r(t) with an error below 1%. A systematic development in orders of t&lt;sup&gt;2&lt;/sup&gt; further yields the 0.001% approximation r&lt;sub&gt;*&lt;/sub&gt;(t)=r&lt;sub&gt;0&lt;/sub&gt;(t)[1−a&lt;sub&gt;1&lt;/sub&gt; Li&lt;sub&gt;2.21&lt;/sub&gt;(t&lt;sup&gt;2&lt;/sup&gt;)], where a&lt;sub&gt;1&lt;/sub&gt;≈−0.018 320 99 is a constant and Li is the polylogarithm. The usefulness of these approximations is demonstrated by comparison to high-precision cavitation data obtained in microgravity.</dcterms:abstract>
    <dc:creator>Farhat, Mohamed</dc:creator>
    <dcterms:issued>2012</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-18T15:49:28Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22485/2/Obreschkow_PhysRevE.85.066303.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22485/2/Obreschkow_PhysRevE.85.066303.pdf"/>
    <dc:creator>Bruderer, Martin</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Bruderer, Martin</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-18T15:49:28Z</dc:date>
    <dc:contributor>Obreschkow, Danail</dc:contributor>
    <dc:contributor>Farhat, Mohamed</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen