Publikation: Analytical approximations for the collapse of an empty spherical bubble
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The Rayleigh equation 3/2Ṙ+RR̈+pρ−1=0 with initial conditions R(0)=R0, Ṙ(0)=0 models the collapse of an empty spherical bubble of radius R(T) in an ideal, infinite liquid with far-field pressure p and density ρ. The solution for r≡R/R0 as a function of time t≡T/Tc, where R(Tc)≡0, is independent of R0, p, and ρ. While no closed-form expression for r(t) is known, we find that r0(t)=(1−t2)2/5 approximates r(t) with an error below 1%. A systematic development in orders of t2 further yields the 0.001% approximation r*(t)=r0(t)[1−a1 Li2.21(t2)], where a1≈−0.018 320 99 is a constant and Li is the polylogarithm. The usefulness of these approximations is demonstrated by comparison to high-precision cavitation data obtained in microgravity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
OBRESCHKOW, Danail, Martin BRUDERER, Mohamed FARHAT, 2012. Analytical approximations for the collapse of an empty spherical bubble. In: Physical Review E. 2012, 85(6). ISSN 1539-3755. eISSN 1550-2376. Available under: doi: 10.1103/PhysRevE.85.066303BibTex
@article{Obreschkow2012Analy-22485, year={2012}, doi={10.1103/PhysRevE.85.066303}, title={Analytical approximations for the collapse of an empty spherical bubble}, number={6}, volume={85}, issn={1539-3755}, journal={Physical Review E}, author={Obreschkow, Danail and Bruderer, Martin and Farhat, Mohamed} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/22485"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:bibliographicCitation>Physical review E ; 85 (2012). - 066303</dcterms:bibliographicCitation> <dcterms:title>Analytical approximations for the collapse of an empty spherical bubble</dcterms:title> <dc:creator>Obreschkow, Danail</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/22485"/> <dcterms:abstract xml:lang="eng">The Rayleigh equation 3/2Ṙ+RR̈+pρ<sup>−1</sup>=0 with initial conditions R(0)=R<sub>0</sub>, Ṙ(0)=0 models the collapse of an empty spherical bubble of radius R(T) in an ideal, infinite liquid with far-field pressure p and density ρ. The solution for r≡R/R<sub>0</sub> as a function of time t≡T/T<sub>c</sub>, where R(T<sub>c</sub>)≡0, is independent of R<sub>0</sub>, p, and ρ. While no closed-form expression for r(t) is known, we find that r<sub>0</sub>(t)=(1−t<sup>2</sup>)<sup>2/5</sup> approximates r(t) with an error below 1%. A systematic development in orders of t<sup>2</sup> further yields the 0.001% approximation r<sub>*</sub>(t)=r<sub>0</sub>(t)[1−a<sub>1</sub> Li<sub>2.21</sub>(t<sup>2</sup>)], where a<sub>1</sub>≈−0.018 320 99 is a constant and Li is the polylogarithm. The usefulness of these approximations is demonstrated by comparison to high-precision cavitation data obtained in microgravity.</dcterms:abstract> <dc:creator>Farhat, Mohamed</dc:creator> <dcterms:issued>2012</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-18T15:49:28Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22485/2/Obreschkow_PhysRevE.85.066303.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/22485/2/Obreschkow_PhysRevE.85.066303.pdf"/> <dc:creator>Bruderer, Martin</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Bruderer, Martin</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-03-18T15:49:28Z</dc:date> <dc:contributor>Obreschkow, Danail</dc:contributor> <dc:contributor>Farhat, Mohamed</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>