Publikation:

Exploration of Preference Models using Visual Analytics

Lade...
Vorschaubild

Dateien

Buchmueller_2-17bgckam60b257.pdf
Buchmueller_2-17bgckam60b257.pdfGröße: 3.32 MBDownloads: 5

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 455910360
Institutionen der Bundesrepublik Deutschland: VIKING (13N16242)

Projekt

CUEPAQ: Visual Analytics und Linguistik für Erfassen, Verständnis und Erklärung personalisierter Argumentqualität , Schwerpunktprogramm "RATIO"
Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

ARCHAMBAULT, Daniel, Hrsg., Ian NABNEY, Hrsg., Jaakko PELTONEN, Hrsg.. MLVis: Machine Learning Methods in Visualisation for Big Data (2024). Eindhoven: Eurographics, 2024. Verfügbar unter: doi: 10.2312/mlvis.20241127

Zusammenfassung

The identification and integration of diverse viewpoints are key to sound decision-making. This paper introduces a novel Visual Analytics technique aimed at summarizing and comparing perspectives derived from established preference models. We use 2D projection and interactive visualization to explore user models based on subjective preference labels and extracted linguistic features. We then employ a pie-chart-like exploration design to enable the aggregation and simultaneous exploration of diverse preference groupings. The approach allows rotation and slicing interactions of the visual space. We demonstrate the technique's applicability and effectiveness through a use case in exploring the complex landscape of argument preferences. We highlight our designs potential to enhance decision-making processes within diverging preferences through Visual Analytics.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

MLVis: Machine Learning Methods in Visualisation for Big Data (2024), 24. Mai 2024, Odense, Denmark
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BUCHMÜLLER, Raphael, Mark-Matthias ZYMLA, Daniel A. KEIM, Miriam BUTT, Rita SEVASTJANOVA, 2024. Exploration of Preference Models using Visual Analytics. MLVis: Machine Learning Methods in Visualisation for Big Data (2024). Odense, Denmark, 24. Mai 2024. In: ARCHAMBAULT, Daniel, Hrsg., Ian NABNEY, Hrsg., Jaakko PELTONEN, Hrsg.. MLVis: Machine Learning Methods in Visualisation for Big Data (2024). Eindhoven: Eurographics, 2024. Verfügbar unter: doi: 10.2312/mlvis.20241127
BibTex
@inproceedings{Buchmuller2024Explo-70141,
  year={2024},
  doi={10.2312/mlvis.20241127},
  title={Exploration of Preference Models using Visual Analytics},
  publisher={Eurographics},
  address={Eindhoven},
  booktitle={MLVis: Machine Learning Methods in Visualisation for Big Data (2024)},
  editor={Archambault, Daniel and Nabney, Ian and Peltonen, Jaakko},
  author={Buchmüller, Raphael and Zymla, Mark-Matthias and Keim, Daniel A. and Butt, Miriam and Sevastjanova, Rita}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70141">
    <dc:contributor>Butt, Miriam</dc:contributor>
    <dc:creator>Butt, Miriam</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Buchmüller, Raphael</dc:creator>
    <dc:creator>Zymla, Mark-Matthias</dc:creator>
    <dc:creator>Sevastjanova, Rita</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-18T06:41:11Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70141"/>
    <dc:contributor>Buchmüller, Raphael</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70141/1/Buchmueller_2-17bgckam60b257.pdf"/>
    <dcterms:issued>2024</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract>The identification and integration of diverse viewpoints are key to sound decision-making. This paper introduces a novel Visual Analytics technique aimed at summarizing and comparing perspectives derived from established preference models. We use 2D projection and interactive visualization to explore user models based on subjective preference labels and extracted linguistic features. We then employ a pie-chart-like exploration design to enable the aggregation and simultaneous exploration of diverse preference groupings. The approach allows rotation and slicing interactions of the visual space. We demonstrate the technique's applicability and effectiveness through a use case in exploring the complex landscape of argument preferences. We highlight our designs potential to enhance decision-making processes within diverging preferences through Visual Analytics.</dcterms:abstract>
    <dc:contributor>Zymla, Mark-Matthias</dc:contributor>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70141/1/Buchmueller_2-17bgckam60b257.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-18T06:41:11Z</dcterms:available>
    <dcterms:title>Exploration of Preference Models using Visual Analytics</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen