Publikation: Exploration of Preference Models using Visual Analytics
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Institutionen der Bundesrepublik Deutschland: VIKING (13N16242)
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The identification and integration of diverse viewpoints are key to sound decision-making. This paper introduces a novel Visual Analytics technique aimed at summarizing and comparing perspectives derived from established preference models. We use 2D projection and interactive visualization to explore user models based on subjective preference labels and extracted linguistic features. We then employ a pie-chart-like exploration design to enable the aggregation and simultaneous exploration of diverse preference groupings. The approach allows rotation and slicing interactions of the visual space. We demonstrate the technique's applicability and effectiveness through a use case in exploring the complex landscape of argument preferences. We highlight our designs potential to enhance decision-making processes within diverging preferences through Visual Analytics.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUCHMÜLLER, Raphael, Mark-Matthias ZYMLA, Daniel A. KEIM, Miriam BUTT, Rita SEVASTJANOVA, 2024. Exploration of Preference Models using Visual Analytics. MLVis: Machine Learning Methods in Visualisation for Big Data (2024). Odense, Denmark, 24. Mai 2024. In: ARCHAMBAULT, Daniel, Hrsg., Ian NABNEY, Hrsg., Jaakko PELTONEN, Hrsg.. MLVis: Machine Learning Methods in Visualisation for Big Data (2024). Eindhoven: Eurographics, 2024. Verfügbar unter: doi: 10.2312/mlvis.20241127BibTex
@inproceedings{Buchmuller2024Explo-70141, year={2024}, doi={10.2312/mlvis.20241127}, title={Exploration of Preference Models using Visual Analytics}, publisher={Eurographics}, address={Eindhoven}, booktitle={MLVis: Machine Learning Methods in Visualisation for Big Data (2024)}, editor={Archambault, Daniel and Nabney, Ian and Peltonen, Jaakko}, author={Buchmüller, Raphael and Zymla, Mark-Matthias and Keim, Daniel A. and Butt, Miriam and Sevastjanova, Rita} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70141"> <dc:contributor>Butt, Miriam</dc:contributor> <dc:creator>Butt, Miriam</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Buchmüller, Raphael</dc:creator> <dc:creator>Zymla, Mark-Matthias</dc:creator> <dc:creator>Sevastjanova, Rita</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-18T06:41:11Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70141"/> <dc:contributor>Buchmüller, Raphael</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70141/1/Buchmueller_2-17bgckam60b257.pdf"/> <dcterms:issued>2024</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Keim, Daniel A.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract>The identification and integration of diverse viewpoints are key to sound decision-making. This paper introduces a novel Visual Analytics technique aimed at summarizing and comparing perspectives derived from established preference models. We use 2D projection and interactive visualization to explore user models based on subjective preference labels and extracted linguistic features. We then employ a pie-chart-like exploration design to enable the aggregation and simultaneous exploration of diverse preference groupings. The approach allows rotation and slicing interactions of the visual space. We demonstrate the technique's applicability and effectiveness through a use case in exploring the complex landscape of argument preferences. We highlight our designs potential to enhance decision-making processes within diverging preferences through Visual Analytics.</dcterms:abstract> <dc:contributor>Zymla, Mark-Matthias</dc:contributor> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70141/1/Buchmueller_2-17bgckam60b257.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-06-18T06:41:11Z</dcterms:available> <dcterms:title>Exploration of Preference Models using Visual Analytics</dcterms:title> </rdf:Description> </rdf:RDF>