Publikation:

Enabling dielectric rear side passivation for industrial mass production by developing lean printing-based solar cell processes

Lade...
Vorschaubild

Dateien

Lauermann_159509.pdf
Lauermann_159509.pdfGröße: 1.49 MBDownloads: 407

Datum

2010

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

2010 35th IEEE Photovoltaic Specialists Conference. IEEE, 2010, pp. 000028-000033. ISBN 978-1-4244-5890-5. Available under: doi: 10.1109/PVSC.2010.5614042

Zusammenfassung

AI2O3 rear-passivated large-area silicon solar cells with screen-printed metallization are demonstrated for the first time. An industrially feasible solar cell process is described that is based on printing steps to contact base and emitter of large area solar cells with dielectric rear side passivation. The base of the cell is contacted at the rear by a full area screen-printed aluminum layer on an inkjet-structured AI2O3/SiNx-layer stack. The Al rear contacts are co-fired with the screen-printed silver front contacts. The firing temperature is reduced to limit deterioration of the passivation ability of the aluminum oxide layer. Synergies are exploited by combining the structuring steps for the formation of openings in the rear side dielectric by hydrofluoric acid with the selective emitter formation on the front side. Investigations on lifetime samples show a 2.5-fold increase in effective lifetime for surfaces passivated by an AI2O3/SiNx stack compared to fully metalized AI-BSF rear sides. This low surface recombination velocity is combined with a low contact resistance. On 125 × 125 mm² boron-doped Czochralski wafers with resistivity of 3 Ωcm an efficiency of 18.6% is achieved, that is a gain of 0.7% absolute compared to the efficiency of 17.9% of the best reference cells with a full area AI-BSF. An increase in the infrared spectrum of the internal quantum efficiency is determined as the source of this gain. Also, a higher reflectance at the rear side is measured that originates most probably from the Si/AI2O3 interface. The quality of the rear side passivation is assessed for the metalized and non-metalized area qualitatively and quantitatively. The local rear contacts are examined via scanning electron microscopy (SEM). A contact passivation mechanism based on a local BSF formation is found that is dependent on firing conditions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

2010 35th IEEE Photovoltaic Specialists Conference (PVSC), 20. Juni 2010 - 25. Juni 2010, Honolulu, HI
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LAUERMANN, Thomas, Thomas LÜDER, Sascha SCHOLZ, Bernd RAABE, Giso HAHN, Barbara TERHEIDEN, 2010. Enabling dielectric rear side passivation for industrial mass production by developing lean printing-based solar cell processes. 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). Honolulu, HI, 20. Juni 2010 - 25. Juni 2010. In: 2010 35th IEEE Photovoltaic Specialists Conference. IEEE, 2010, pp. 000028-000033. ISBN 978-1-4244-5890-5. Available under: doi: 10.1109/PVSC.2010.5614042
BibTex
@inproceedings{Lauermann2010-06Enabl-15950,
  year={2010},
  doi={10.1109/PVSC.2010.5614042},
  title={Enabling dielectric rear side passivation for industrial mass production by developing lean printing-based solar cell processes},
  isbn={978-1-4244-5890-5},
  publisher={IEEE},
  booktitle={2010 35th IEEE Photovoltaic Specialists Conference},
  pages={000028--000033},
  author={Lauermann, Thomas and Lüder, Thomas and Scholz, Sascha and Raabe, Bernd and Hahn, Giso and Terheiden, Barbara}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/15950">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:contributor>Scholz, Sascha</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:bibliographicCitation>Publ. in: 35th IEEE Photovoltaic Specialists Conference (PVSC 2010): Honolulu, Hawaii, USA, 20 - 25 June 2010 / [IEEE Electron Devices Society]. Piscataway, NJ : IEEE, 2010. pp. 28-33</dcterms:bibliographicCitation>
    <dcterms:issued>2010-06</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15950/2/Lauermann_159509.pdf"/>
    <dc:contributor>Hahn, Giso</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-10T08:47:23Z</dcterms:available>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Lauermann, Thomas</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Terheiden, Barbara</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Terheiden, Barbara</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/15950"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/15950/2/Lauermann_159509.pdf"/>
    <dc:creator>Lüder, Thomas</dc:creator>
    <dc:contributor>Lauermann, Thomas</dc:contributor>
    <dcterms:abstract xml:lang="eng">AI&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; rear-passivated large-area silicon solar cells with screen-printed metallization are demonstrated for the first time. An industrially feasible solar cell process is described that is based on printing steps to contact base and emitter of large area solar cells with dielectric rear side passivation. The base of the cell is contacted at the rear by a full area screen-printed aluminum layer on an inkjet-structured AI&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;/SiN&lt;sub&gt;x&lt;/sub&gt;-layer stack. The Al rear contacts are co-fired with the screen-printed silver front contacts. The firing temperature is reduced to limit deterioration of the passivation ability of the aluminum oxide layer. Synergies are exploited by combining the structuring steps for the formation of openings in the rear side dielectric by hydrofluoric acid with the selective emitter formation on the front side. Investigations on lifetime samples show a 2.5-fold increase in effective lifetime for surfaces passivated by an AI&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;/SiN&lt;sub&gt;x&lt;/sub&gt; stack compared to fully metalized AI-BSF rear sides. This low surface recombination velocity is combined with a low contact resistance. On 125 × 125 mm² boron-doped Czochralski wafers with resistivity of 3 Ωcm an efficiency of 18.6% is achieved, that is a gain of 0.7% absolute compared to the efficiency of 17.9% of the best reference cells with a full area AI-BSF. An increase in the infrared spectrum of the internal quantum efficiency is determined as the source of this gain. Also, a higher reflectance at the rear side is measured that originates most probably from the Si/AI&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; interface. The quality of the rear side passivation is assessed for the metalized and non-metalized area qualitatively and quantitatively. The local rear contacts are examined via scanning electron microscopy (SEM). A contact passivation mechanism based on a local BSF formation is found that is dependent on firing conditions.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-10-10T08:47:23Z</dc:date>
    <dc:contributor>Raabe, Bernd</dc:contributor>
    <dcterms:title>Enabling dielectric rear side passivation for industrial mass production by developing lean printing-based solar cell processes</dcterms:title>
    <dc:creator>Scholz, Sascha</dc:creator>
    <dc:creator>Raabe, Bernd</dc:creator>
    <dc:contributor>Lüder, Thomas</dc:contributor>
    <dc:creator>Hahn, Giso</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen