Publikation: Bias and Variance in Multiparty Election Polls
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 426500462
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Recent polling failures highlight that election polls are prone to biases that the margin of error customarily reported with polls does not capture. However, such systematic errors are difficult to assess against the background noise of sampling variance. Shirani-Mehr et al. (2018) developed a hierarchical Bayesian model to disentangle random and systematic errors in poll estimates of two-party vote shares at the election level. The method can inform realistic assessments of poll accuracy. We adapt the model to multiparty elections and improve its temporal flexibility. We then estimate bias and variance in 5,240 German national election polls, 1994–2021. Our analysis suggests that the average absolute election-day bias per party was about 1.5 percentage points, ranging from 0.9 for the Greens to 3.2 for the Christian Democrats. The estimated variance is, on average, about twice as large as that implied by usual margins of error. We find little evidence of house or mode effects. Common biases indicate industry effects due to similar methodological problems. The Supplementary Material provides additional results for 1,751 regional election polls.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SELB, Peter, Sina CHEN, John L. KÖRTNER, Philipp BOSCH, 2023. Bias and Variance in Multiparty Election Polls. In: Public Opinion Quarterly. Oxford University Press (OUP). 2023, 87(4), S. 1025-1037. ISSN 0033-362X. eISSN 1537-5331. Verfügbar unter: doi: 10.1093/poq/nfad046BibTex
@article{Selb2023-11-29Varia-68566, title={Bias and Variance in Multiparty Election Polls}, year={2023}, doi={10.1093/poq/nfad046}, number={4}, volume={87}, issn={0033-362X}, journal={Public Opinion Quarterly}, pages={1025--1037}, author={Selb, Peter and Chen, Sina and Körtner, John L. and Bosch, Philipp} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68566"> <dc:contributor>Bosch, Philipp</dc:contributor> <dc:creator>Selb, Peter</dc:creator> <dc:contributor>Selb, Peter</dc:contributor> <dcterms:abstract>Recent polling failures highlight that election polls are prone to biases that the margin of error customarily reported with polls does not capture. However, such systematic errors are difficult to assess against the background noise of sampling variance. Shirani-Mehr et al. (2018) developed a hierarchical Bayesian model to disentangle random and systematic errors in poll estimates of two-party vote shares at the election level. The method can inform realistic assessments of poll accuracy. We adapt the model to multiparty elections and improve its temporal flexibility. We then estimate bias and variance in 5,240 German national election polls, 1994–2021. Our analysis suggests that the average absolute election-day bias per party was about 1.5 percentage points, ranging from 0.9 for the Greens to 3.2 for the Christian Democrats. The estimated variance is, on average, about twice as large as that implied by usual margins of error. We find little evidence of house or mode effects. Common biases indicate industry effects due to similar methodological problems. The Supplementary Material provides additional results for 1,751 regional election polls.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-04T09:08:55Z</dc:date> <dcterms:title>Bias and Variance in Multiparty Election Polls</dcterms:title> <dc:creator>Bosch, Philipp</dc:creator> <dc:creator>Chen, Sina</dc:creator> <dc:creator>Körtner, John L.</dc:creator> <dc:contributor>Körtner, John L.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68566"/> <dcterms:issued>2023-11-29</dcterms:issued> <dc:language>eng</dc:language> <dc:contributor>Chen, Sina</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-04T09:08:55Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68566/1/Selb_2-17m9x5yc2n00m2.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68566/1/Selb_2-17m9x5yc2n00m2.pdf"/> </rdf:Description> </rdf:RDF>