Publikation:

Bias and Variance in Multiparty Election Polls

Lade...
Vorschaubild

Dateien

Selb_2-17m9x5yc2n00m2.pdf
Selb_2-17m9x5yc2n00m2.pdfGröße: 548.58 KBDownloads: 95

Datum

2023

Autor:innen

Selb, Peter
Chen, Sina
Körtner, John L.
Bosch, Philipp

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 426500462
Deutsche Forschungsgemeinschaft (DFG): 426500462

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Public Opinion Quarterly. Oxford University Press (OUP). 2023, 87(4), S. 1025-1037. ISSN 0033-362X. eISSN 1537-5331. Verfügbar unter: doi: 10.1093/poq/nfad046

Zusammenfassung

Recent polling failures highlight that election polls are prone to biases that the margin of error customarily reported with polls does not capture. However, such systematic errors are difficult to assess against the background noise of sampling variance. Shirani-Mehr et al. (2018) developed a hierarchical Bayesian model to disentangle random and systematic errors in poll estimates of two-party vote shares at the election level. The method can inform realistic assessments of poll accuracy. We adapt the model to multiparty elections and improve its temporal flexibility. We then estimate bias and variance in 5,240 German national election polls, 1994–2021. Our analysis suggests that the average absolute election-day bias per party was about 1.5 percentage points, ranging from 0.9 for the Greens to 3.2 for the Christian Democrats. The estimated variance is, on average, about twice as large as that implied by usual margins of error. We find little evidence of house or mode effects. Common biases indicate industry effects due to similar methodological problems. The Supplementary Material provides additional results for 1,751 regional election polls.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

History and Philosophy of Science, General Social Sciences, Sociology and Political Science, History, Communication

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Datensatz
Replication Code for: Bias and Variance in Multiparty Election Polls
(V1, 2023) Selb, Peter; Chen, Sina; Körtner, John L.; Bosch, Philipp

Zitieren

ISO 690SELB, Peter, Sina CHEN, John L. KÖRTNER, Philipp BOSCH, 2023. Bias and Variance in Multiparty Election Polls. In: Public Opinion Quarterly. Oxford University Press (OUP). 2023, 87(4), S. 1025-1037. ISSN 0033-362X. eISSN 1537-5331. Verfügbar unter: doi: 10.1093/poq/nfad046
BibTex
@article{Selb2023-11-29Varia-68566,
  title={Bias and Variance in Multiparty Election Polls},
  year={2023},
  doi={10.1093/poq/nfad046},
  number={4},
  volume={87},
  issn={0033-362X},
  journal={Public Opinion Quarterly},
  pages={1025--1037},
  author={Selb, Peter and Chen, Sina and Körtner, John L. and Bosch, Philipp}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68566">
    <dc:contributor>Bosch, Philipp</dc:contributor>
    <dc:creator>Selb, Peter</dc:creator>
    <dc:contributor>Selb, Peter</dc:contributor>
    <dcterms:abstract>Recent polling failures highlight that election polls are prone to biases that the margin of error customarily reported with polls does not capture. However, such systematic errors are difficult to assess against the background noise of sampling variance. Shirani-Mehr et al. (2018) developed a hierarchical Bayesian model to disentangle random and systematic errors in poll estimates of two-party vote shares at the election level. The method can inform realistic assessments of poll accuracy. We adapt the model to multiparty elections and improve its temporal flexibility. We then estimate bias and variance in 5,240 German national election polls, 1994–2021. Our analysis suggests that the average absolute election-day bias per party was about 1.5 percentage points, ranging from 0.9 for the Greens to 3.2 for the Christian Democrats. The estimated variance is, on average, about twice as large as that implied by usual margins of error. We find little evidence of house or mode effects. Common biases indicate industry effects due to similar methodological problems. The Supplementary Material provides additional results for 1,751 regional election polls.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-04T09:08:55Z</dc:date>
    <dcterms:title>Bias and Variance in Multiparty Election Polls</dcterms:title>
    <dc:creator>Bosch, Philipp</dc:creator>
    <dc:creator>Chen, Sina</dc:creator>
    <dc:creator>Körtner, John L.</dc:creator>
    <dc:contributor>Körtner, John L.</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68566"/>
    <dcterms:issued>2023-11-29</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Chen, Sina</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-12-04T09:08:55Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68566/1/Selb_2-17m9x5yc2n00m2.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68566/1/Selb_2-17m9x5yc2n00m2.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
Replication data and documentation
Diese Publikation teilen