Publikation: Acceleration of Direct Model Optimization Methods by Function Approximation
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In recent years optimization of simulation models has become a very important application field of direct optimization strategies. The search process of these iterative strategies is only based on cost function values and does not require any additional analytical information like gradients etc. Today the most common direct methods for global optimization are Genetic Algorithms, Evolution Strategies, and Simulated Annealing. All these methods apply sophisticated probabilistic search operators which Imitate principles of nature. Although these operators have been proven to be well-suited for global search the required computational effort (number of required cost function evaluations) still remains a big problem. In this paper we focus on acceleration methods for direct global optimization strategies. Our approach is based on cost function approximation. As approximation techniques we use a simple grid-based method and RecBFNs (Rectangular Basis Function Networks), a special kind of neural networks. The methods we have developed have been applied successfully to model optimization as well as to a selection of mathematical test problems. The encouraging results presented in this paper show that it is possible to optimize simulation models both successfully and with tolerable computational effort.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SYRJAKOW, Michael, Helena SZCZERBICKA, Michael R. BERTHOLD, Klaus-Peter HUBER, 1996. Acceleration of Direct Model Optimization Methods by Function Approximation. ESS. Sheraton Hotel and Conference Centre, Genoa, Italy, 24. Okt. 1996 - 26. Okt. 1996. In: BRUZZONE, Agostino G., ed., Eugene J. H. KERCKHOFFS, ed.. Simulation in Industry : 8 th European Simulation Symposium 1996, ESS ' 96 ; October 24 - 26, 1996, Sheraton Hotel and Conference Centre, Genoa, Italy. San Diego, CA: The Society for Computer Simulation, 1996, pp. 181-186. ISBN 1-56555-099-4BibTex
@inproceedings{Syrjakow1996Accel-24410, year={1996}, title={Acceleration of Direct Model Optimization Methods by Function Approximation}, isbn={1-56555-099-4}, publisher={The Society for Computer Simulation}, address={San Diego, CA}, booktitle={Simulation in Industry : 8 th European Simulation Symposium 1996, ESS ' 96 ; October 24 - 26, 1996, Sheraton Hotel and Conference Centre, Genoa, Italy}, pages={181--186}, editor={Bruzzone, Agostino G. and Kerckhoffs, Eugene J. H.}, author={Syrjakow, Michael and Szczerbicka, Helena and Berthold, Michael R. and Huber, Klaus-Peter} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/24410"> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24410/1/Syrjakow_244104.pdf"/> <dc:language>eng</dc:language> <dcterms:bibliographicCitation>Simulation in Industry : 8th European Simulation Symposium 1996, ESS '96 ; October 24 - 26, 1996, Sheraton Hotel and Conference Centre, Genoa, Italy / Agostino G. Bruzzone, Eugene J. H. Kerckhoffs (eds.). - San Diego, CA : The Society for Computer Simulation, 1996. - S. 181-186. - ISBN 1-56555-099-4</dcterms:bibliographicCitation> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24410"/> <dc:contributor>Syrjakow, Michael</dc:contributor> <dc:contributor>Huber, Klaus-Peter</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Szczerbicka, Helena</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24410/1/Syrjakow_244104.pdf"/> <dc:creator>Berthold, Michael R.</dc:creator> <dc:creator>Huber, Klaus-Peter</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-17T13:02:33Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Szczerbicka, Helena</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Syrjakow, Michael</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-17T13:02:33Z</dc:date> <dcterms:abstract xml:lang="eng">In recent years optimization of simulation models has become a very important application field of direct optimization strategies. The search process of these iterative strategies is only based on cost function values and does not require any additional analytical information like gradients etc. Today the most common direct methods for global optimization are Genetic Algorithms, Evolution Strategies, and Simulated Annealing. All these methods apply sophisticated probabilistic search operators which Imitate principles of nature. Although these operators have been proven to be well-suited for global search the required computational effort (number of required cost function evaluations) still remains a big problem. In this paper we focus on acceleration methods for direct global optimization strategies. Our approach is based on cost function approximation. As approximation techniques we use a simple grid-based method and RecBFNs (Rectangular Basis Function Networks), a special kind of neural networks. The methods we have developed have been applied successfully to model optimization as well as to a selection of mathematical test problems. The encouraging results presented in this paper show that it is possible to optimize simulation models both successfully and with tolerable computational effort.</dcterms:abstract> <dcterms:title>Acceleration of Direct Model Optimization Methods by Function Approximation</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>1996</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Berthold, Michael R.</dc:contributor> </rdf:Description> </rdf:RDF>