Publikation:

Syntrophic butyrate and propionate oxidation processes : from genomes to reaction mechanisms

Lade...
Vorschaubild

Dateien

2010_Mueller_489_499.pdf
2010_Mueller_489_499.pdfGröße: 336.18 KBDownloads: 2548

Datum

2010

Autor:innen

Worm, Petra
Stams, Alfons J. M.
Plugge, Caroline M.

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Environmental Microbiology Reports. 2010, 2(4), pp. 489-499. eISSN 1758-2229. Available under: doi: 10.1111/j.1758-2229.2010.00147.x

Zusammenfassung

In anoxic environments such as swamps, rice fields and sludge digestors, syntrophic microbial communities are important for decomposition of organic matter to CO2 and CH4. The most difficult step is the fermentative degradation of short-chain fatty acids such as propionate and butyrate. Conversion of these metabolites to acetate, CO2, formate and hydrogen is endergonic under standard conditions and occurs only if methanogens keep the concentrations of these intermediate products low. Butyrate and propionate degradation pathways include oxidation steps of comparably high redox potential, i.e. oxidation of butyryl-CoA to crotonyl-CoA and of succinate to fumarate, respectively, that require investment of energy to release the electrons as hydrogen or formate. Although investigated for several decades, the biochemistry of these reactions is still not completely understood. Genome analysis of the butyrateoxidizing Syntrophomonas wolfei and Syntrophus aciditrophicus and of the propionate-oxidizing Syntrophobacter fumaroxidans and Pelotomaculum thermopropionicum reveals the presence of energytransforming protein complexes. Recent studies indicated that S. wolfei uses electron-transferring flavoproteins coupled to a menaquinone loop to drive butyryl-CoA oxidation, and that S. fumaroxidans uses a periplasmic formate dehydrogenase, cytochrome b:quinone oxidoreductases, a menaquinone loop and a cytoplasmic fumarate reductase to drive energydependent succinate oxidation. Furthermore, we propose that homologues of the Thermotoga maritima bifurcating [FeFe]-hydrogenase are involved in NADH oxidation by S. wolfei and S. fumaroxidans to form hydrogen.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MÜLLER, Nicolai, Petra WORM, Bernhard SCHINK, Alfons J. M. STAMS, Caroline M. PLUGGE, 2010. Syntrophic butyrate and propionate oxidation processes : from genomes to reaction mechanisms. In: Environmental Microbiology Reports. 2010, 2(4), pp. 489-499. eISSN 1758-2229. Available under: doi: 10.1111/j.1758-2229.2010.00147.x
BibTex
@article{Muller2010Syntr-7488,
  year={2010},
  doi={10.1111/j.1758-2229.2010.00147.x},
  title={Syntrophic butyrate and propionate oxidation processes : from genomes to reaction mechanisms},
  number={4},
  volume={2},
  journal={Environmental Microbiology Reports},
  pages={489--499},
  author={Müller, Nicolai and Worm, Petra and Schink, Bernhard and Stams, Alfons J. M. and Plugge, Caroline M.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/7488">
    <dc:creator>Schink, Bernhard</dc:creator>
    <dc:creator>Worm, Petra</dc:creator>
    <dc:contributor>Worm, Petra</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Schink, Bernhard</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:creator>Müller, Nicolai</dc:creator>
    <dcterms:abstract xml:lang="eng">In anoxic environments such as swamps, rice fields and sludge digestors, syntrophic microbial communities are important for decomposition of organic matter to CO2 and CH4. The most difficult step is the fermentative degradation of short-chain fatty acids such as propionate and butyrate. Conversion of these metabolites to acetate, CO2, formate and hydrogen is endergonic under standard conditions and occurs only if methanogens keep the concentrations of these intermediate products low. Butyrate and propionate degradation pathways include oxidation steps of comparably high redox potential, i.e. oxidation of butyryl-CoA to crotonyl-CoA and of succinate to fumarate, respectively, that require investment of energy to release the electrons as hydrogen or formate. Although investigated for several decades, the biochemistry of these reactions is still not completely understood. Genome analysis of the butyrateoxidizing Syntrophomonas wolfei and Syntrophus aciditrophicus and of the propionate-oxidizing Syntrophobacter fumaroxidans and Pelotomaculum thermopropionicum reveals the presence of energytransforming protein complexes. Recent studies indicated that S. wolfei uses electron-transferring flavoproteins coupled to a menaquinone loop to drive butyryl-CoA oxidation, and that S. fumaroxidans uses a periplasmic formate dehydrogenase, cytochrome b:quinone oxidoreductases, a menaquinone loop and a cytoplasmic fumarate reductase to drive energydependent succinate oxidation. Furthermore, we propose that homologues of the Thermotoga maritima bifurcating [FeFe]-hydrogenase are involved in NADH oxidation by S. wolfei and S. fumaroxidans to form hydrogen.</dcterms:abstract>
    <dcterms:bibliographicCitation>First publ. in: Environmental Microbiology Reports ; 2 (2010), 4. - S. 489-499</dcterms:bibliographicCitation>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7488"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7488/1/2010_Mueller_489_499.pdf"/>
    <dc:creator>Plugge, Caroline M.</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dcterms:issued>2010</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:contributor>Müller, Nicolai</dc:contributor>
    <dc:contributor>Stams, Alfons J. M.</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7488/1/2010_Mueller_489_499.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:34:49Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Syntrophic butyrate and propionate oxidation processes : from genomes to reaction mechanisms</dcterms:title>
    <dc:creator>Stams, Alfons J. M.</dc:creator>
    <dc:contributor>Plugge, Caroline M.</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen