Publikation: Measuring the robustness of network community structure using assortativity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The existence of discrete social clusters, or 'communities', is a common feature of social networks in human and nonhuman animals. The level of such community structure in networks is typically measured using an index of modularity, Q. While modularity quantifies the degree to which individuals associate within versus between social communities and provides a useful measure of structure in the social network, it assumes that the network has been well sampled. However, animal social network data is typically subject to sampling errors. In particular, the associations among individuals are often not sampled equally, and animal social network studies are often based on a relatively small set of observations. Here, we extend an existing framework for bootstrapping network metrics to provide a method for assessing the robustness of community assignment in social networks using a metric we call community assortativity (rcom). We use simulations to demonstrate that modularity can reliably detect the transition from random to structured associations in networks that differ in size and number of communities, while community assortativity accurately measures the level of confidence based on the detectability of associations. We then demonstrate the use of these metrics using three publicly available data sets of avian social networks. We suggest that by explicitly addressing the known limitations in sampling animal social network, this approach will facilitate more rigorous analyses of population-level structural patterns across social systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SHIZUKA, Daizaburo, Damien R. FARINE, 2016. Measuring the robustness of network community structure using assortativity. In: Animal behaviour. 2016, 112, pp. 237-246. ISSN 0003-3472. eISSN 1095-8282. Available under: doi: 10.1016/j.anbehav.2015.12.007BibTex
@article{Shizuka2016Measu-42842, year={2016}, doi={10.1016/j.anbehav.2015.12.007}, title={Measuring the robustness of network community structure using assortativity}, volume={112}, issn={0003-3472}, journal={Animal behaviour}, pages={237--246}, author={Shizuka, Daizaburo and Farine, Damien R.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42842"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42842/1/Shizuka_2-17u3xy1expukt3.pdf"/> <dcterms:abstract xml:lang="eng">The existence of discrete social clusters, or 'communities', is a common feature of social networks in human and nonhuman animals. The level of such community structure in networks is typically measured using an index of modularity, Q. While modularity quantifies the degree to which individuals associate within versus between social communities and provides a useful measure of structure in the social network, it assumes that the network has been well sampled. However, animal social network data is typically subject to sampling errors. In particular, the associations among individuals are often not sampled equally, and animal social network studies are often based on a relatively small set of observations. Here, we extend an existing framework for bootstrapping network metrics to provide a method for assessing the robustness of community assignment in social networks using a metric we call community assortativity (rcom). We use simulations to demonstrate that modularity can reliably detect the transition from random to structured associations in networks that differ in size and number of communities, while community assortativity accurately measures the level of confidence based on the detectability of associations. We then demonstrate the use of these metrics using three publicly available data sets of avian social networks. We suggest that by explicitly addressing the known limitations in sampling animal social network, this approach will facilitate more rigorous analyses of population-level structural patterns across social systems.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42842/1/Shizuka_2-17u3xy1expukt3.pdf"/> <dcterms:issued>2016</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Shizuka, Daizaburo</dc:contributor> <dc:contributor>Farine, Damien R.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Measuring the robustness of network community structure using assortativity</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42842"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Farine, Damien R.</dc:creator> <dc:creator>Shizuka, Daizaburo</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-11T09:43:54Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-11T09:43:54Z</dc:date> </rdf:Description> </rdf:RDF>