Publikation:

Maximum Entropy and Quantized Metric Models for Absolute Category Ratings

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Rusek, Krzysztof
Hägele, David
Weiskopf, Daniel
Janowski, Lucjan

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 251654672

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Signal Processing Letters. Institute of Electrical and Electronics Engineers (IEEE). 2024, 31, S. 2970-2974. ISSN 1070-9908. eISSN 1558-2361. Verfügbar unter: doi: 10.1109/lsp.2024.3480832

Zusammenfassung

The datasets of most image quality assessment studies contain ratings on a categorical scale with five levels, from bad (1) to excellent (5). For each stimulus, the number of ratings from 1 to 5 is summarized and given in the form of the mean opinion score. In this study, we investigate families of multinomial probability distributions parameterized by mean and variance that are used to fit the empirical rating distributions. To this end, we consider quantized metric models based on continuous distributions that model perceived stimulus quality on a latent scale. The probabilities for the rating categories are determined by quantizing the corresponding random variables using threshold values. Furthermore, we introduce a novel discrete maximum entropy distribution for a given mean and variance. We compare the performance of these models and the state of the art given by the generalized score distribution for two large data sets, KonIQ-10k and VQEG HDTV. Given an input distribution of ratings, our fitted two-parameter models predict unseen ratings better than the empirical distribution. In contrast to empirical distributions of absolute category ratings and their discrete models, our continuous models can provide fine-grained estimates of quantiles of quality of experience that are relevant to service providers to satisfy a certain fraction of the user population.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Absolute category rating, mean opinion score, image and video quality assessment, distribution models, quantized metric models, maximum entropy distribution, generalized score distribution, distribution fitting and prediction

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SAUPE, Dietmar, Krzysztof RUSEK, David HÄGELE, Daniel WEISKOPF, Lucjan JANOWSKI, 2024. Maximum Entropy and Quantized Metric Models for Absolute Category Ratings. In: IEEE Signal Processing Letters. Institute of Electrical and Electronics Engineers (IEEE). 2024, 31, S. 2970-2974. ISSN 1070-9908. eISSN 1558-2361. Verfügbar unter: doi: 10.1109/lsp.2024.3480832
BibTex
@article{Saupe2024Maxim-71386,
  year={2024},
  doi={10.1109/lsp.2024.3480832},
  title={Maximum Entropy and Quantized Metric Models for Absolute Category Ratings},
  volume={31},
  issn={1070-9908},
  journal={IEEE Signal Processing Letters},
  pages={2970--2974},
  author={Saupe, Dietmar and Rusek, Krzysztof and Hägele, David and Weiskopf, Daniel and Janowski, Lucjan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71386">
    <dc:creator>Janowski, Lucjan</dc:creator>
    <dc:contributor>Rusek, Krzysztof</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71386"/>
    <dcterms:issued>2024</dcterms:issued>
    <dc:creator>Rusek, Krzysztof</dc:creator>
    <dc:contributor>Hägele, David</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:creator>Weiskopf, Daniel</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T07:10:55Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Hägele, David</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:title>Maximum Entropy and Quantized Metric Models for Absolute Category Ratings</dcterms:title>
    <dc:contributor>Weiskopf, Daniel</dc:contributor>
    <dcterms:abstract>The datasets of most image quality assessment studies contain ratings on a categorical scale with five levels, from bad (1) to excellent (5). For each stimulus, the number of ratings from 1 to 5 is summarized and given in the form of the mean opinion score. In this study, we investigate families of multinomial probability distributions parameterized by mean and variance that are used to fit the empirical rating distributions. To this end, we consider quantized metric models based on continuous distributions that model perceived stimulus quality on a latent scale. The probabilities for the rating categories are determined by quantizing the corresponding random variables using threshold values. Furthermore, we introduce a novel discrete maximum entropy distribution for a given mean and variance. We compare the performance of these models and the state of the art given by the generalized score distribution for two large data sets, KonIQ-10k and VQEG HDTV. Given an input distribution of ratings, our fitted two-parameter models predict unseen ratings better than the empirical distribution. In contrast to empirical distributions of absolute category ratings and their discrete models, our continuous models can provide fine-grained estimates of quantiles of quality of experience that are relevant to service providers to satisfy a certain fraction of the user population.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T07:10:55Z</dc:date>
    <dc:contributor>Janowski, Lucjan</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen