Publikation: Maximum Entropy and Quantized Metric Models for Absolute Category Ratings
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The datasets of most image quality assessment studies contain ratings on a categorical scale with five levels, from bad (1) to excellent (5). For each stimulus, the number of ratings from 1 to 5 is summarized and given in the form of the mean opinion score. In this study, we investigate families of multinomial probability distributions parameterized by mean and variance that are used to fit the empirical rating distributions. To this end, we consider quantized metric models based on continuous distributions that model perceived stimulus quality on a latent scale. The probabilities for the rating categories are determined by quantizing the corresponding random variables using threshold values. Furthermore, we introduce a novel discrete maximum entropy distribution for a given mean and variance. We compare the performance of these models and the state of the art given by the generalized score distribution for two large data sets, KonIQ-10k and VQEG HDTV. Given an input distribution of ratings, our fitted two-parameter models predict unseen ratings better than the empirical distribution. In contrast to empirical distributions of absolute category ratings and their discrete models, our continuous models can provide fine-grained estimates of quantiles of quality of experience that are relevant to service providers to satisfy a certain fraction of the user population.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SAUPE, Dietmar, Krzysztof RUSEK, David HÄGELE, Daniel WEISKOPF, Lucjan JANOWSKI, 2024. Maximum Entropy and Quantized Metric Models for Absolute Category Ratings. In: IEEE Signal Processing Letters. Institute of Electrical and Electronics Engineers (IEEE). 2024, 31, S. 2970-2974. ISSN 1070-9908. eISSN 1558-2361. Verfügbar unter: doi: 10.1109/lsp.2024.3480832BibTex
@article{Saupe2024Maxim-71386, year={2024}, doi={10.1109/lsp.2024.3480832}, title={Maximum Entropy and Quantized Metric Models for Absolute Category Ratings}, volume={31}, issn={1070-9908}, journal={IEEE Signal Processing Letters}, pages={2970--2974}, author={Saupe, Dietmar and Rusek, Krzysztof and Hägele, David and Weiskopf, Daniel and Janowski, Lucjan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71386"> <dc:creator>Janowski, Lucjan</dc:creator> <dc:contributor>Rusek, Krzysztof</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71386"/> <dcterms:issued>2024</dcterms:issued> <dc:creator>Rusek, Krzysztof</dc:creator> <dc:contributor>Hägele, David</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:creator>Weiskopf, Daniel</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T07:10:55Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Hägele, David</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Saupe, Dietmar</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Maximum Entropy and Quantized Metric Models for Absolute Category Ratings</dcterms:title> <dc:contributor>Weiskopf, Daniel</dc:contributor> <dcterms:abstract>The datasets of most image quality assessment studies contain ratings on a categorical scale with five levels, from bad (1) to excellent (5). For each stimulus, the number of ratings from 1 to 5 is summarized and given in the form of the mean opinion score. In this study, we investigate families of multinomial probability distributions parameterized by mean and variance that are used to fit the empirical rating distributions. To this end, we consider quantized metric models based on continuous distributions that model perceived stimulus quality on a latent scale. The probabilities for the rating categories are determined by quantizing the corresponding random variables using threshold values. Furthermore, we introduce a novel discrete maximum entropy distribution for a given mean and variance. We compare the performance of these models and the state of the art given by the generalized score distribution for two large data sets, KonIQ-10k and VQEG HDTV. Given an input distribution of ratings, our fitted two-parameter models predict unseen ratings better than the empirical distribution. In contrast to empirical distributions of absolute category ratings and their discrete models, our continuous models can provide fine-grained estimates of quantiles of quality of experience that are relevant to service providers to satisfy a certain fraction of the user population.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T07:10:55Z</dc:date> <dc:contributor>Janowski, Lucjan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>