Publikation:

Efficient Contrast Effect Compensation with Personalized Perception Models

Lade...
Vorschaubild

Dateien

Keim_0-297284.pdf
Keim_0-297284.pdfGröße: 3.2 MBDownloads: 547

Datum

2015

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computer Graphics Forum. 2015, 34(3), pp. 211-220. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12633

Zusammenfassung

Color is one of the most effective visual variables and is frequently used to encode metric quantities. Contrast effects are considered harmful in data visualizations since they significantly bias our perception of colors. For instance, a gray patch appears brighter on a black background than on a white background. Accordingly, the perception of color-encoded data items depends on the surround in the rendered visualization. A method that compensates for contrast effects has been presented previously, which significantly improves the users’ accuracy in reading and comparing color encoded data. The method utilizes established perception models to compensate for contrast effects, assuming an average human observer. In this paper, we provide experiments that show a significant difference in the perception of users. We introduce methods to personalize contrast effect compensation and show that this outperforms the original method with a user study. We, further, overcome the major limitation of the original method, which is a runtime of several minutes. With the use of efficient optimization and surrogate models, we are able to reduce runtime to milliseconds, making the method applicable in interactive visualizations.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MITTELSTÄDT, Sebastian, Daniel A. KEIM, 2015. Efficient Contrast Effect Compensation with Personalized Perception Models. In: Computer Graphics Forum. 2015, 34(3), pp. 211-220. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.12633
BibTex
@article{Mittelstadt2015Effic-31762,
  year={2015},
  doi={10.1111/cgf.12633},
  title={Efficient Contrast Effect Compensation with Personalized Perception Models},
  number={3},
  volume={34},
  issn={0167-7055},
  journal={Computer Graphics Forum},
  pages={211--220},
  author={Mittelstädt, Sebastian and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31762">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-16T13:38:35Z</dcterms:available>
    <dcterms:abstract xml:lang="eng">Color is one of the most effective visual variables and is frequently used to encode metric quantities. Contrast effects are considered harmful in data visualizations since they significantly bias our perception of colors. For instance, a gray patch appears brighter on a black background than on a white background. Accordingly, the perception of color-encoded data items depends on the surround in the rendered visualization. A method that compensates for contrast effects has been presented previously, which significantly improves the users’ accuracy in reading and comparing color encoded data. The method utilizes established perception models to compensate for contrast effects, assuming an average human observer. In this paper, we provide experiments that show a significant difference in the perception of users. We introduce methods to personalize contrast effect compensation and show that this outperforms the original method with a user study. We, further, overcome the major limitation of the original method, which is a runtime of several minutes. With the use of efficient optimization and surrogate models, we are able to reduce runtime to milliseconds, making the method applicable in interactive visualizations.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Efficient Contrast Effect Compensation with Personalized Perception Models</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:issued>2015</dcterms:issued>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31762/1/Keim_0-297284.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-16T13:38:35Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31762/1/Keim_0-297284.pdf"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Mittelstädt, Sebastian</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31762"/>
    <dc:creator>Mittelstädt, Sebastian</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen