Publikation:

Mono- and Intralink Filter (Mi-Filter) To Reduce False Identifications in Cross-Linking Mass Spectrometry Data

Lade...
Vorschaubild

Dateien

Chen_2-181jilox555hd3.pdf
Chen_2-181jilox555hd3.pdfGröße: 2.49 MBDownloads: 96

Datum

2022

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Analytical Chemistry. American Chemical Society (ACS). 2022, 94(51), pp. 17751-17756. ISSN 0096-4484. eISSN 1520-6882. Available under: doi: 10.1021/acs.analchem.2c00494

Zusammenfassung

Cross-linking mass spectrometry (XL-MS) has become an indispensable tool for the emerging field of systems structural biology over the recent years. However, the confidence in individual protein–protein interactions (PPIs) depends on the correct assessment of individual inter-protein cross-links. In this article, we describe a mono- and intralink filter (mi-filter) that is applicable to any kind of cross-linking data and workflow. It stipulates that only proteins for which at least one monolink or intra-protein cross-link has been identified within a given data set are considered for an inter-protein cross-link and therefore participate in a PPI. We show that this simple and intuitive filter has a dramatic effect on different types of cross-linking data ranging from individual protein complexes over medium-complexity affinity enrichments to proteome-wide cell lysates and significantly reduces the number of false-positive identifications for inter-protein links in all these types of XL-MS data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CHEN, Xingyu, Carolin SAILER, Kai-Michael KAMMER, Julius FÜRSCH, Markus R. EISELE, Eri SAKATA, Riccardo PELLARIN, Florian STENGEL, 2022. Mono- and Intralink Filter (Mi-Filter) To Reduce False Identifications in Cross-Linking Mass Spectrometry Data. In: Analytical Chemistry. American Chemical Society (ACS). 2022, 94(51), pp. 17751-17756. ISSN 0096-4484. eISSN 1520-6882. Available under: doi: 10.1021/acs.analchem.2c00494
BibTex
@article{Chen2022-12-27Intra-59702,
  year={2022},
  doi={10.1021/acs.analchem.2c00494},
  title={Mono- and Intralink Filter (Mi-Filter) To Reduce False Identifications in Cross-Linking Mass Spectrometry Data},
  number={51},
  volume={94},
  issn={0096-4484},
  journal={Analytical Chemistry},
  pages={17751--17756},
  author={Chen, Xingyu and Sailer, Carolin and Kammer, Kai-Michael and Fürsch, Julius and Eisele, Markus R. and Sakata, Eri and Pellarin, Riccardo and Stengel, Florian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59702">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59702"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T08:05:01Z</dcterms:available>
    <dc:contributor>Kammer, Kai-Michael</dc:contributor>
    <dcterms:title>Mono- and Intralink Filter (Mi-Filter) To Reduce False Identifications in Cross-Linking Mass Spectrometry Data</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-13T08:05:01Z</dc:date>
    <dc:contributor>Sakata, Eri</dc:contributor>
    <dc:contributor>Chen, Xingyu</dc:contributor>
    <dc:contributor>Eisele, Markus R.</dc:contributor>
    <dc:creator>Sailer, Carolin</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59702/1/Chen_2-181jilox555hd3.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Kammer, Kai-Michael</dc:creator>
    <dc:creator>Sakata, Eri</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2022-12-27</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59702/1/Chen_2-181jilox555hd3.pdf"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:contributor>Fürsch, Julius</dc:contributor>
    <dc:creator>Fürsch, Julius</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:abstract xml:lang="eng">Cross-linking mass spectrometry (XL-MS) has become an indispensable tool for the emerging field of systems structural biology over the recent years. However, the confidence in individual protein–protein interactions (PPIs) depends on the correct assessment of individual inter-protein cross-links. In this article, we describe a mono- and intralink filter (mi-filter) that is applicable to any kind of cross-linking data and workflow. It stipulates that only proteins for which at least one monolink or intra-protein cross-link has been identified within a given data set are considered for an inter-protein cross-link and therefore participate in a PPI. We show that this simple and intuitive filter has a dramatic effect on different types of cross-linking data ranging from individual protein complexes over medium-complexity affinity enrichments to proteome-wide cell lysates and significantly reduces the number of false-positive identifications for inter-protein links in all these types of XL-MS data.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/>
    <dc:contributor>Stengel, Florian</dc:contributor>
    <dc:contributor>Sailer, Carolin</dc:contributor>
    <dc:creator>Eisele, Markus R.</dc:creator>
    <dc:contributor>Pellarin, Riccardo</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Chen, Xingyu</dc:creator>
    <dc:creator>Stengel, Florian</dc:creator>
    <dc:creator>Pellarin, Riccardo</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen