Publikation:

The Regularity of Minima for the Dirichlet Problem on BD

Lade...
Vorschaubild

Dateien

Gmeineder_2-186pv2j6c0vl11.pdf
Gmeineder_2-186pv2j6c0vl11.pdfGröße: 1.13 MBDownloads: 158

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Archive for Rational Mechanics and Analysis. Springer. 2020, 237(3), pp. 1099-1171. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-020-01507-5

Zusammenfassung

We establish that the Dirichlet problem for linear growth functionals on BD, the functions of bounded deformation, gives rise to the same unconditional Sobolev and partial C1,α-regularity theory as presently available for the full gradient Dirichlet problem on BV. Functions of bounded deformation play an important role in, for example plasticity, however, by Ornstein’s non-inequality, contain BV as a proper subspace. Thus, techniques to establish regularity by full gradient methods for variational problems on BV do not apply here. In particular, applying to all generalised minima (that is, minima of a suitably relaxed problem) despite their non-uniqueness and reaching the ellipticity ranges known from the BV-case, this paper extends previous Sobolev regularity results by Gmeineder and Kristensen (in J Calc Var 58:56, 2019) in an optimal way.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690GMEINEDER, Franz, 2020. The Regularity of Minima for the Dirichlet Problem on BD. In: Archive for Rational Mechanics and Analysis. Springer. 2020, 237(3), pp. 1099-1171. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-020-01507-5
BibTex
@article{Gmeineder2020Regul-53933,
  year={2020},
  doi={10.1007/s00205-020-01507-5},
  title={The Regularity of Minima for the Dirichlet Problem on BD},
  number={3},
  volume={237},
  issn={0003-9527},
  journal={Archive for Rational Mechanics and Analysis},
  pages={1099--1171},
  author={Gmeineder, Franz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53933">
    <dc:rights>terms-of-use</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T13:13:27Z</dc:date>
    <dc:creator>Gmeineder, Franz</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53933/1/Gmeineder_2-186pv2j6c0vl11.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2020</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T13:13:27Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Gmeineder, Franz</dc:contributor>
    <dcterms:abstract xml:lang="eng">We establish that the Dirichlet problem for linear growth functionals on BD, the functions of bounded deformation, gives rise to the same unconditional Sobolev and partial C&lt;sup&gt;1,α&lt;/sup&gt;-regularity theory as presently available for the full gradient Dirichlet problem on BV. Functions of bounded deformation play an important role in, for example plasticity, however, by Ornstein’s non-inequality, contain BV as a proper subspace. Thus, techniques to establish regularity by full gradient methods for variational problems on BV do not apply here. In particular, applying to all generalised minima (that is, minima of a suitably relaxed problem) despite their non-uniqueness and reaching the ellipticity ranges known from the BV-case, this paper extends previous Sobolev regularity results by Gmeineder and Kristensen (in J Calc Var 58:56, 2019) in an optimal way.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53933/1/Gmeineder_2-186pv2j6c0vl11.pdf"/>
    <dcterms:title>The Regularity of Minima for the Dirichlet Problem on BD</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53933"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen