Publikation: The Regularity of Minima for the Dirichlet Problem on BD
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We establish that the Dirichlet problem for linear growth functionals on BD, the functions of bounded deformation, gives rise to the same unconditional Sobolev and partial C1,α-regularity theory as presently available for the full gradient Dirichlet problem on BV. Functions of bounded deformation play an important role in, for example plasticity, however, by Ornstein’s non-inequality, contain BV as a proper subspace. Thus, techniques to establish regularity by full gradient methods for variational problems on BV do not apply here. In particular, applying to all generalised minima (that is, minima of a suitably relaxed problem) despite their non-uniqueness and reaching the ellipticity ranges known from the BV-case, this paper extends previous Sobolev regularity results by Gmeineder and Kristensen (in J Calc Var 58:56, 2019) in an optimal way.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GMEINEDER, Franz, 2020. The Regularity of Minima for the Dirichlet Problem on BD. In: Archive for Rational Mechanics and Analysis. Springer. 2020, 237(3), pp. 1099-1171. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-020-01507-5BibTex
@article{Gmeineder2020Regul-53933, year={2020}, doi={10.1007/s00205-020-01507-5}, title={The Regularity of Minima for the Dirichlet Problem on BD}, number={3}, volume={237}, issn={0003-9527}, journal={Archive for Rational Mechanics and Analysis}, pages={1099--1171}, author={Gmeineder, Franz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53933"> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T13:13:27Z</dc:date> <dc:creator>Gmeineder, Franz</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53933/1/Gmeineder_2-186pv2j6c0vl11.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2020</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-09T13:13:27Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Gmeineder, Franz</dc:contributor> <dcterms:abstract xml:lang="eng">We establish that the Dirichlet problem for linear growth functionals on BD, the functions of bounded deformation, gives rise to the same unconditional Sobolev and partial C<sup>1,α</sup>-regularity theory as presently available for the full gradient Dirichlet problem on BV. Functions of bounded deformation play an important role in, for example plasticity, however, by Ornstein’s non-inequality, contain BV as a proper subspace. Thus, techniques to establish regularity by full gradient methods for variational problems on BV do not apply here. In particular, applying to all generalised minima (that is, minima of a suitably relaxed problem) despite their non-uniqueness and reaching the ellipticity ranges known from the BV-case, this paper extends previous Sobolev regularity results by Gmeineder and Kristensen (in J Calc Var 58:56, 2019) in an optimal way.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53933/1/Gmeineder_2-186pv2j6c0vl11.pdf"/> <dcterms:title>The Regularity of Minima for the Dirichlet Problem on BD</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53933"/> </rdf:Description> </rdf:RDF>