Publikation: Exploring the Representativity of Art Paintings
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Art painting evaluation is sophisticated for a novice with no or limited knowledge on art criticism and history. In this study, we propose the concept of representativity to evaluate paintings instead of using professional concepts, such as genre, media, and style, which may be confusing to non-professionals. We define the concept of representativity to evaluate quantitatively the extent to which a painting can represent the characteristics of an artist's creations. We begin by proposing a novel deep representation of art paintings, which is enhanced by style information through a weighted pooling feature fusion module. In contrast to existing feature extraction approaches, the proposed framework embeds painting styles and authorship information and learns specific artwork characteristics in a single framework. Subsequently, we propose a graph-based learning method for representativity learning, which considers intra-category and extra-category information. In view of the significance of historical factors in the art domain, we introduce the creation time of a painting into the learning process. User studies demonstrate our approach helps the public effectively access the creation characteristics of artists through sorting paintings by representativity from highest to lowest.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENG, Yingying, Fan TANG, Weiming DONG, Chongyang MA, Feiyue HUANG, Oliver DEUSSEN, Changsheng XU, 2020. Exploring the Representativity of Art Paintings. In: IEEE Transactions on Multimedia. IEEE. 2020, 23, pp. 2794-2805. ISSN 1520-9210. eISSN 1941-0077. Available under: doi: 10.1109/TMM.2020.3016887BibTex
@article{Deng2020Explo-50622, year={2020}, doi={10.1109/TMM.2020.3016887}, title={Exploring the Representativity of Art Paintings}, volume={23}, issn={1520-9210}, journal={IEEE Transactions on Multimedia}, pages={2794--2805}, author={Deng, Yingying and Tang, Fan and Dong, Weiming and Ma, Chongyang and Huang, Feiyue and Deussen, Oliver and Xu, Changsheng} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50622"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Dong, Weiming</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T11:05:32Z</dc:date> <dc:creator>Dong, Weiming</dc:creator> <dc:creator>Xu, Changsheng</dc:creator> <dc:contributor>Xu, Changsheng</dc:contributor> <dc:contributor>Deng, Yingying</dc:contributor> <dc:contributor>Tang, Fan</dc:contributor> <dcterms:issued>2020</dcterms:issued> <dc:creator>Deng, Yingying</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Ma, Chongyang</dc:contributor> <dc:creator>Ma, Chongyang</dc:creator> <dcterms:title>Exploring the Representativity of Art Paintings</dcterms:title> <dc:creator>Deussen, Oliver</dc:creator> <dcterms:abstract xml:lang="eng">Art painting evaluation is sophisticated for a novice with no or limited knowledge on art criticism and history. In this study, we propose the concept of representativity to evaluate paintings instead of using professional concepts, such as genre, media, and style, which may be confusing to non-professionals. We define the concept of representativity to evaluate quantitatively the extent to which a painting can represent the characteristics of an artist's creations. We begin by proposing a novel deep representation of art paintings, which is enhanced by style information through a weighted pooling feature fusion module. In contrast to existing feature extraction approaches, the proposed framework embeds painting styles and authorship information and learns specific artwork characteristics in a single framework. Subsequently, we propose a graph-based learning method for representativity learning, which considers intra-category and extra-category information. In view of the significance of historical factors in the art domain, we introduce the creation time of a painting into the learning process. User studies demonstrate our approach helps the public effectively access the creation characteristics of artists through sorting paintings by representativity from highest to lowest.</dcterms:abstract> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50622"/> <dc:contributor>Deussen, Oliver</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T11:05:32Z</dcterms:available> <dc:creator>Huang, Feiyue</dc:creator> <dc:contributor>Huang, Feiyue</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Tang, Fan</dc:creator> </rdf:Description> </rdf:RDF>