Publikation:

Exploring the Representativity of Art Paintings

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Autor:innen

Deng, Yingying
Dong, Weiming
Ma, Chongyang
Huang, Feiyue
Xu, Changsheng

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Multimedia. IEEE. 2020, 23, pp. 2794-2805. ISSN 1520-9210. eISSN 1941-0077. Available under: doi: 10.1109/TMM.2020.3016887

Zusammenfassung

Art painting evaluation is sophisticated for a novice with no or limited knowledge on art criticism and history. In this study, we propose the concept of representativity to evaluate paintings instead of using professional concepts, such as genre, media, and style, which may be confusing to non-professionals. We define the concept of representativity to evaluate quantitatively the extent to which a painting can represent the characteristics of an artist's creations. We begin by proposing a novel deep representation of art paintings, which is enhanced by style information through a weighted pooling feature fusion module. In contrast to existing feature extraction approaches, the proposed framework embeds painting styles and authorship information and learns specific artwork characteristics in a single framework. Subsequently, we propose a graph-based learning method for representativity learning, which considers intra-category and extra-category information. In view of the significance of historical factors in the art domain, we introduce the creation time of a painting into the learning process. User studies demonstrate our approach helps the public effectively access the creation characteristics of artists through sorting paintings by representativity from highest to lowest.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DENG, Yingying, Fan TANG, Weiming DONG, Chongyang MA, Feiyue HUANG, Oliver DEUSSEN, Changsheng XU, 2020. Exploring the Representativity of Art Paintings. In: IEEE Transactions on Multimedia. IEEE. 2020, 23, pp. 2794-2805. ISSN 1520-9210. eISSN 1941-0077. Available under: doi: 10.1109/TMM.2020.3016887
BibTex
@article{Deng2020Explo-50622,
  year={2020},
  doi={10.1109/TMM.2020.3016887},
  title={Exploring the Representativity of Art Paintings},
  volume={23},
  issn={1520-9210},
  journal={IEEE Transactions on Multimedia},
  pages={2794--2805},
  author={Deng, Yingying and Tang, Fan and Dong, Weiming and Ma, Chongyang and Huang, Feiyue and Deussen, Oliver and Xu, Changsheng}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50622">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Dong, Weiming</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T11:05:32Z</dc:date>
    <dc:creator>Dong, Weiming</dc:creator>
    <dc:creator>Xu, Changsheng</dc:creator>
    <dc:contributor>Xu, Changsheng</dc:contributor>
    <dc:contributor>Deng, Yingying</dc:contributor>
    <dc:contributor>Tang, Fan</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dc:creator>Deng, Yingying</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Ma, Chongyang</dc:contributor>
    <dc:creator>Ma, Chongyang</dc:creator>
    <dcterms:title>Exploring the Representativity of Art Paintings</dcterms:title>
    <dc:creator>Deussen, Oliver</dc:creator>
    <dcterms:abstract xml:lang="eng">Art painting evaluation is sophisticated for a novice with no or limited knowledge on art criticism and history. In this study, we propose the concept of representativity to evaluate paintings instead of using professional concepts, such as genre, media, and style, which may be confusing to non-professionals. We define the concept of representativity to evaluate quantitatively the extent to which a painting can represent the characteristics of an artist's creations. We begin by proposing a novel deep representation of art paintings, which is enhanced by style information through a weighted pooling feature fusion module. In contrast to existing feature extraction approaches, the proposed framework embeds painting styles and authorship information and learns specific artwork characteristics in a single framework. Subsequently, we propose a graph-based learning method for representativity learning, which considers intra-category and extra-category information. In view of the significance of historical factors in the art domain, we introduce the creation time of a painting into the learning process. User studies demonstrate our approach helps the public effectively access the creation characteristics of artists through sorting paintings by representativity from highest to lowest.</dcterms:abstract>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50622"/>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T11:05:32Z</dcterms:available>
    <dc:creator>Huang, Feiyue</dc:creator>
    <dc:contributor>Huang, Feiyue</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Tang, Fan</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen