Assessing Low-Intensity Relationships in Complex Networks

Lade...
Vorschaubild
Dateien
Spitz_2-18e5cstrnqwuy7.pdf
Spitz_2-18e5cstrnqwuy7.pdfGröße: 859.72 KBDownloads: 84
Datum
2016
Autor:innen
Gimmler, Anna
Stoeck, Thorsten
Zweig, Katharina Anna
Horvát, Emőke-Ágnes
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
PLoS one. Public Library of Science (PLoS). 2016, 11(4), e0152536. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0152536
Zusammenfassung

Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SPITZ, Andreas, Anna GIMMLER, Thorsten STOECK, Katharina Anna ZWEIG, Emőke-Ágnes HORVÁT, 2016. Assessing Low-Intensity Relationships in Complex Networks. In: PLoS one. Public Library of Science (PLoS). 2016, 11(4), e0152536. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0152536
BibTex
@article{Spitz2016Asses-55361,
  year={2016},
  doi={10.1371/journal.pone.0152536},
  title={Assessing Low-Intensity Relationships in Complex Networks},
  number={4},
  volume={11},
  journal={PLoS one},
  author={Spitz, Andreas and Gimmler, Anna and Stoeck, Thorsten and Zweig, Katharina Anna and Horvát, Emőke-Ágnes},
  note={Article Number: e0152536}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55361">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Horvát, Emőke-Ágnes</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Gimmler, Anna</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Zweig, Katharina Anna</dc:contributor>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55361/3/Spitz_2-18e5cstrnqwuy7.pdf"/>
    <dc:creator>Zweig, Katharina Anna</dc:creator>
    <dc:creator>Stoeck, Thorsten</dc:creator>
    <dc:contributor>Gimmler, Anna</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-26T07:47:11Z</dc:date>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55361/3/Spitz_2-18e5cstrnqwuy7.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55361"/>
    <dcterms:abstract xml:lang="eng">Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes.</dcterms:abstract>
    <dc:contributor>Stoeck, Thorsten</dc:contributor>
    <dc:creator>Horvát, Emőke-Ágnes</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:title>Assessing Low-Intensity Relationships in Complex Networks</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-26T07:47:11Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen