Publikation:

Assessing Low-Intensity Relationships in Complex Networks

Lade...
Vorschaubild

Dateien

Spitz_2-18e5cstrnqwuy7.pdf
Spitz_2-18e5cstrnqwuy7.pdfGröße: 859.72 KBDownloads: 93

Datum

2016

Autor:innen

Gimmler, Anna
Stoeck, Thorsten
Zweig, Katharina Anna
Horvát, Emőke-Ágnes

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

PLoS one. Public Library of Science (PLoS). 2016, 11(4), e0152536. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0152536

Zusammenfassung

Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SPITZ, Andreas, Anna GIMMLER, Thorsten STOECK, Katharina Anna ZWEIG, Emőke-Ágnes HORVÁT, 2016. Assessing Low-Intensity Relationships in Complex Networks. In: PLoS one. Public Library of Science (PLoS). 2016, 11(4), e0152536. eISSN 1932-6203. Available under: doi: 10.1371/journal.pone.0152536
BibTex
@article{Spitz2016Asses-55361,
  year={2016},
  doi={10.1371/journal.pone.0152536},
  title={Assessing Low-Intensity Relationships in Complex Networks},
  number={4},
  volume={11},
  journal={PLoS one},
  author={Spitz, Andreas and Gimmler, Anna and Stoeck, Thorsten and Zweig, Katharina Anna and Horvát, Emőke-Ágnes},
  note={Article Number: e0152536}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55361">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Horvát, Emőke-Ágnes</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Gimmler, Anna</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Zweig, Katharina Anna</dc:contributor>
    <dc:creator>Spitz, Andreas</dc:creator>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55361/3/Spitz_2-18e5cstrnqwuy7.pdf"/>
    <dc:creator>Zweig, Katharina Anna</dc:creator>
    <dc:creator>Stoeck, Thorsten</dc:creator>
    <dc:contributor>Gimmler, Anna</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-26T07:47:11Z</dc:date>
    <dc:contributor>Spitz, Andreas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55361/3/Spitz_2-18e5cstrnqwuy7.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55361"/>
    <dcterms:abstract xml:lang="eng">Many large network data sets are noisy and contain links representing low-intensity relationships that are difficult to differentiate from random interactions. This is especially relevant for high-throughput data from systems biology, large-scale ecological data, but also for Web 2.0 data on human interactions. In these networks with missing and spurious links, it is possible to refine the data based on the principle of structural similarity, which assesses the shared neighborhood of two nodes. By using similarity measures to globally rank all possible links and choosing the top-ranked pairs, true links can be validated, missing links inferred, and spurious observations removed. While many similarity measures have been proposed to this end, there is no general consensus on which one to use. In this article, we first contribute a set of benchmarks for complex networks from three different settings (e-commerce, systems biology, and social networks) and thus enable a quantitative performance analysis of classic node similarity measures. Based on this, we then propose a new methodology for link assessment called z* that assesses the statistical significance of the number of their common neighbors by comparison with the expected value in a suitably chosen random graph model and which is a consistently top-performing algorithm for all benchmarks. In addition to a global ranking of links, we also use this method to identify the most similar neighbors of each single node in a local ranking, thereby showing the versatility of the method in two distinct scenarios and augmenting its applicability. Finally, we perform an exploratory analysis on an oceanographic plankton data set and find that the distribution of microbes follows similar biogeographic rules as those of macroorganisms, a result that rejects the global dispersal hypothesis for microbes.</dcterms:abstract>
    <dc:contributor>Stoeck, Thorsten</dc:contributor>
    <dc:creator>Horvát, Emőke-Ágnes</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:title>Assessing Low-Intensity Relationships in Complex Networks</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-10-26T07:47:11Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen