Publikation: On oscillatory solutions to the complete Euler system
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 320078
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Differential Equations. Elsevier. 2020, 269(2), S. 1521-1543. ISSN 0022-0396. eISSN 1090-2732. Verfügbar unter: doi: 10.1016/j.jde.2020.01.018
Zusammenfassung
The Euler system in fluid dynamics is a model of a compressible inviscid fluid incorporating the three basic physical principles: Conservation of mass, momentum, and energy. We show that the Cauchy problem is basically ill-posed for the L∞-initial data in the class of weak entropy solutions. As a consequence, there are infinitely many measure-valued solutions for a vast set of initial data. Finally, using the concept of relative energy, we discuss a singular limit problem for the measure-valued solutions, where the Mach and Froude number are proportional to a small parameter.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Compressible Euler equations, Measure-valued solutions
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
FEIREISL, Eduard, Christian KLINGENBERG, Ondřej KREML, Simon MARKFELDER, 2020. On oscillatory solutions to the complete Euler system. In: Journal of Differential Equations. Elsevier. 2020, 269(2), S. 1521-1543. ISSN 0022-0396. eISSN 1090-2732. Verfügbar unter: doi: 10.1016/j.jde.2020.01.018BibTex
@article{Feireisl2020-07oscil-71651, year={2020}, doi={10.1016/j.jde.2020.01.018}, title={On oscillatory solutions to the complete Euler system}, number={2}, volume={269}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={1521--1543}, author={Feireisl, Eduard and Klingenberg, Christian and Kreml, Ondřej and Markfelder, Simon} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71651"> <dcterms:abstract>The Euler system in fluid dynamics is a model of a compressible inviscid fluid incorporating the three basic physical principles: Conservation of mass, momentum, and energy. We show that the Cauchy problem is basically ill-posed for the L<sup>∞</sup>-initial data in the class of weak entropy solutions. As a consequence, there are infinitely many measure-valued solutions for a vast set of initial data. Finally, using the concept of relative energy, we discuss a singular limit problem for the measure-valued solutions, where the Mach and Froude number are proportional to a small parameter.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71651"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T12:14:51Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-12-11T12:14:51Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kreml, Ondřej</dc:contributor> <dc:contributor>Klingenberg, Christian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>On oscillatory solutions to the complete Euler system</dcterms:title> <dc:creator>Kreml, Ondřej</dc:creator> <dc:creator>Klingenberg, Christian</dc:creator> <dc:contributor>Feireisl, Eduard</dc:contributor> <dcterms:issued>2020-07</dcterms:issued> <dc:contributor>Markfelder, Simon</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Feireisl, Eduard</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Markfelder, Simon</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja