Publikation:

Edge coloring lattice graphs

Lade...
Vorschaubild

Dateien

Kattemoelle_2-18xfcgz8zwwkk2.pdf
Kattemoelle_2-18xfcgz8zwwkk2.pdfGröße: 4.63 MBDownloads: 2

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Mathematical Physics. AIP Publishing. 2025, 66(5), 051901. ISSN 0022-2488. eISSN 1089-7658. Verfügbar unter: doi: 10.1063/5.0243007

Zusammenfassung

We develop the theory of the edge coloring of lattice graphs. A central role is played by a necessary and sufficient condition for a proper edge coloring of a patch of a lattice graph to induce a proper edge coloring of the entire lattice graph by translation. Using this condition, we introduce a method that finds nearly minimal or minimal edge colorings of lattice graphs. For a nearly minimal edge coloring, the running time is O(μ2D4), where μ is the number of edges in one cell (or “basis graph”) of the lattice graph and D is the maximum distance between two cells connected by an edge. Crucially, this complexity depends only on local properties of the lattice graph, making it independent of the total graph size. As a result, the method applies even to infinite lattice graphs with finite maximum degree. For minimal edge coloring, we lack a rigorous upper bound on the running time, which we find poses no limitation in practice; we use the method to minimally edge color the meshes of all k-uniform tilings of the plane for k ≤ 6 with modest computational resources. We find that all these lattice graphs belong to Vizing class I. By relating edge colorings to quantum circuits, our work has direct applications in quantum computation, including quantum simulation of condensed matter, cluster-state preparation, error characterization, and error correction.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KATTEMÖLLE, Joris, 2025. Edge coloring lattice graphs. In: Journal of Mathematical Physics. AIP Publishing. 2025, 66(5), 051901. ISSN 0022-2488. eISSN 1089-7658. Verfügbar unter: doi: 10.1063/5.0243007
BibTex
@article{Kattemolle2025-05-01color-73764,
  title={Edge coloring lattice graphs},
  year={2025},
  doi={10.1063/5.0243007},
  number={5},
  volume={66},
  issn={0022-2488},
  journal={Journal of Mathematical Physics},
  author={Kattemölle, Joris},
  note={Article Number: 051901}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73764">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73764"/>
    <dc:creator>Kattemölle, Joris</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-01T05:53:05Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73764/1/Kattemoelle_2-18xfcgz8zwwkk2.pdf"/>
    <dcterms:title>Edge coloring lattice graphs</dcterms:title>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:abstract>We develop the theory of the edge coloring of lattice graphs. A central role is played by a necessary and sufficient condition for a proper edge coloring of a patch of a lattice graph to induce a proper edge coloring of the entire lattice graph by translation. Using this condition, we introduce a method that finds nearly minimal or minimal edge colorings of lattice graphs. For a nearly minimal edge coloring, the running time is O(μ&lt;sup&gt;2&lt;/sup&gt;D&lt;sup&gt;4&lt;/sup&gt;), where μ is the number of edges in one cell (or “basis graph”) of the lattice graph and D is the maximum distance between two cells connected by an edge. Crucially, this complexity depends only on local properties of the lattice graph, making it independent of the total graph size. As a result, the method applies even to infinite lattice graphs with finite maximum degree. For minimal edge coloring, we lack a rigorous upper bound on the running time, which we find poses no limitation in practice; we use the method to minimally edge color the meshes of all k-uniform tilings of the plane for k ≤ 6 with modest computational resources. We find that all these lattice graphs belong to Vizing class I. By relating edge colorings to quantum circuits, our work has direct applications in quantum computation, including quantum simulation of condensed matter, cluster-state preparation, error characterization, and error correction.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73764/1/Kattemoelle_2-18xfcgz8zwwkk2.pdf"/>
    <dcterms:issued>2025-05-01</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-01T05:53:05Z</dcterms:available>
    <dc:contributor>Kattemölle, Joris</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen