Adaptive Step Sizes for Stochastic Gradient Descent

Lade...
Vorschaubild
Dateien
Karakoc_2-195qgktu8dk3w1.pdf
Karakoc_2-195qgktu8dk3w1.pdfGröße: 1.05 MBDownloads: 68
Datum
2023
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Bachelorarbeit
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In this thesis, we first lay some theoretical groundwork before motivating and discussing the stochastic gradient descent method along with its variations. We then analyze some popular step size strategies with a focus on the stochastic Polyak step size, a step size strategy requiring very little fine-tuning of parameters. At the end of this theoretical part, we prove the convergence of stochastic gradient descent with stochastic Polyak step sizes. In the practical part, we first implement and compare the different step size strategies numerically using a small test problem to gain a better understanding about their characteristics. Finally, we use stochastic gradient descent with Polyak’s step size to solve a parameter identification problem of an ordinary diffential equation with uncertain initial conditions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690KARAKOC, Dylan, 2023. Adaptive Step Sizes for Stochastic Gradient Descent [Bachelor thesis]. Konstanz: Universität Konstanz
BibTex
@mastersthesis{Karakoc2023Adapt-68032,
  year={2023},
  title={Adaptive Step Sizes for Stochastic Gradient Descent},
  address={Konstanz},
  school={Universität Konstanz},
  author={Karakoc, Dylan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68032">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-03T07:18:46Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68032/4/Karakoc_2-195qgktu8dk3w1.pdf"/>
    <dc:contributor>Karakoc, Dylan</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Karakoc, Dylan</dc:creator>
    <dcterms:abstract>In this thesis, we first lay some theoretical groundwork before motivating and discussing the stochastic gradient descent method along with its variations. We then analyze some popular step size strategies with a focus on the stochastic Polyak step
size, a step size strategy requiring very little fine-tuning of parameters. At the end of this theoretical part, we prove the convergence of stochastic gradient descent with stochastic Polyak step sizes. In the practical part, we first implement and compare the different step size strategies numerically using a small test problem to gain a better understanding about their characteristics. Finally, we use stochastic gradient descent with Polyak’s step size to solve a parameter identification problem of an ordinary diffential equation with uncertain initial conditions.</dcterms:abstract>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68032"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68032/4/Karakoc_2-195qgktu8dk3w1.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-03T07:18:46Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:title>Adaptive Step Sizes for Stochastic Gradient Descent</dcterms:title>
    <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Hochschulschriftenvermerk
Konstanz, Universität Konstanz, Bachelorarbeit, 2023
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen