Adaptive Step Sizes for Stochastic Gradient Descent
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this thesis, we first lay some theoretical groundwork before motivating and discussing the stochastic gradient descent method along with its variations. We then analyze some popular step size strategies with a focus on the stochastic Polyak step size, a step size strategy requiring very little fine-tuning of parameters. At the end of this theoretical part, we prove the convergence of stochastic gradient descent with stochastic Polyak step sizes. In the practical part, we first implement and compare the different step size strategies numerically using a small test problem to gain a better understanding about their characteristics. Finally, we use stochastic gradient descent with Polyak’s step size to solve a parameter identification problem of an ordinary diffential equation with uncertain initial conditions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
KARAKOC, Dylan, 2023. Adaptive Step Sizes for Stochastic Gradient Descent [Bachelor thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Karakoc2023Adapt-68032, year={2023}, title={Adaptive Step Sizes for Stochastic Gradient Descent}, address={Konstanz}, school={Universität Konstanz}, author={Karakoc, Dylan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/68032"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-03T07:18:46Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68032/4/Karakoc_2-195qgktu8dk3w1.pdf"/> <dc:contributor>Karakoc, Dylan</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Karakoc, Dylan</dc:creator> <dcterms:abstract>In this thesis, we first lay some theoretical groundwork before motivating and discussing the stochastic gradient descent method along with its variations. We then analyze some popular step size strategies with a focus on the stochastic Polyak step size, a step size strategy requiring very little fine-tuning of parameters. At the end of this theoretical part, we prove the convergence of stochastic gradient descent with stochastic Polyak step sizes. In the practical part, we first implement and compare the different step size strategies numerically using a small test problem to gain a better understanding about their characteristics. Finally, we use stochastic gradient descent with Polyak’s step size to solve a parameter identification problem of an ordinary diffential equation with uncertain initial conditions.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/68032"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/68032/4/Karakoc_2-195qgktu8dk3w1.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-11-03T07:18:46Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-sa/4.0/"/> <dcterms:issued>2023</dcterms:issued> <dcterms:title>Adaptive Step Sizes for Stochastic Gradient Descent</dcterms:title> <dc:rights>Attribution-NonCommercial-ShareAlike 4.0 International</dc:rights> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>