Publikation: Estimating the neighborhood influence on decision makers : theory and an application on the analysis of innovation decisions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
When making decisions, agents tend to make use of decisions oth- ers have made in similar situations. Ignoring this behavior in empirical models can be interpreted as a problem of omitted variables and may seriously bias parameter estimates and harm inference. We suggest a possibility ofintegrat- ing such outside in uences into models of discrete choice decisions by defining an abstract space in which agents with similar characteristics are neighbors who possibly in uence each other. In order to correct for correlations between the characteristics, the design of this space allows for nonorthogonality ofits dimensions. Several Monte Carlo simulations show the small sample properties of spatial models with binary choice. When applying the estimator to inno- vation decisions data of German firms, we find evidence for the existence of neighborhood effects.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
HAUTSCH, Nikolaus, Stefan KLOTZ, 2001. Estimating the neighborhood influence on decision makers : theory and an application on the analysis of innovation decisionsBibTex
@techreport{Hautsch2001Estim-11757, year={2001}, series={CoFE-Diskussionspapiere / Zentrum für Finanzen und Ökonometrie}, title={Estimating the neighborhood influence on decision makers : theory and an application on the analysis of innovation decisions}, number={2001/04}, author={Hautsch, Nikolaus and Klotz, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/11757"> <dcterms:issued>2001</dcterms:issued> <dc:contributor>Klotz, Stefan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11757/1/dp01_04.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:40:03Z</dcterms:available> <dcterms:abstract xml:lang="eng">When making decisions, agents tend to make use of decisions oth- ers have made in similar situations. Ignoring this behavior in empirical models can be interpreted as a problem of omitted variables and may seriously bias parameter estimates and harm inference. We suggest a possibility ofintegrat- ing such outside in uences into models of discrete choice decisions by defining an abstract space in which agents with similar characteristics are neighbors who possibly in uence each other. In order to correct for correlations between the characteristics, the design of this space allows for nonorthogonality ofits dimensions. Several Monte Carlo simulations show the small sample properties of spatial models with binary choice. When applying the estimator to inno- vation decisions data of German firms, we find evidence for the existence of neighborhood effects.</dcterms:abstract> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/11757/1/dp01_04.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Hautsch, Nikolaus</dc:contributor> <dc:creator>Hautsch, Nikolaus</dc:creator> <dc:format>application/pdf</dc:format> <dc:creator>Klotz, Stefan</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-25T09:40:03Z</dc:date> <dcterms:title>Estimating the neighborhood influence on decision makers : theory and an application on the analysis of innovation decisions</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/11757"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>