Publikation:

Discrete-time k-positive linear systems

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2021

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

IEEE Transactions on Automatic Control. IEEE. 2021, 66(1), pp. 399-405. ISSN 0018-9286. eISSN 1558-2523. Available under: doi: 10.1109/TAC.2020.2987285

Zusammenfassung

Positive systems play an important role in systems and control theory and have found many applications in multi-agent systems, neural networks, systems biology, and more. Positive systems map the nonnegative orthant to itself (and also the nonpositive orthant to itself). In other words, they map the set of vectors with zero sign variation to itself. In this note, discrete-time linear systems that map the set of vectors with up to k-1 sign variations to itself are introduced. For the special case k = 1 these reduce to discrete-time positive linear systems. Properties of these systems are analyzed using tools from the theory of sign-regular matrices. In particular, it is shown that almost every solution of such systems converges to the set of vectors with up to k-1 sign variations. It is also shown that these systems induce a positive dynamics of k-dimensional parallelotopes.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690ALSEIDI, Rola, Michael MARGALIOT, Jürgen GARLOFF, 2021. Discrete-time k-positive linear systems. In: IEEE Transactions on Automatic Control. IEEE. 2021, 66(1), pp. 399-405. ISSN 0018-9286. eISSN 1558-2523. Available under: doi: 10.1109/TAC.2020.2987285
BibTex
@article{Alseidi2021Discr-48940.2,
  year={2021},
  doi={10.1109/TAC.2020.2987285},
  title={Discrete-time k-positive linear systems},
  number={1},
  volume={66},
  issn={0018-9286},
  journal={IEEE Transactions on Automatic Control},
  pages={399--405},
  author={Alseidi, Rola and Margaliot, Michael and Garloff, Jürgen}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48940.2">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:abstract xml:lang="eng">Positive systems play an important role in systems and control theory and have found many applications in multi-agent systems, neural networks, systems biology, and more. Positive systems map the nonnegative orthant to itself (and also the nonpositive orthant to itself). In other words, they map the set of vectors with zero sign variation to itself. In this note, discrete-time linear systems that map the set of vectors with up to k-1 sign variations to itself are introduced. For the special case k = 1 these reduce to discrete-time  positive linear systems. Properties of these systems are analyzed using tools from the theory of sign-regular matrices. In particular, it is shown that almost every solution of such systems converges to the set of vectors with up to k-1 sign variations. It is also shown that these systems induce a positive dynamics of k-dimensional parallelotopes.</dcterms:abstract>
    <dcterms:title>Discrete-time k-positive linear systems</dcterms:title>
    <dcterms:issued>2021</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-20T10:46:00Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Garloff, Jürgen</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Margaliot, Michael</dc:contributor>
    <dc:creator>Alseidi, Rola</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Alseidi, Rola</dc:contributor>
    <dc:creator>Margaliot, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-20T10:46:00Z</dcterms:available>
    <dc:contributor>Garloff, Jürgen</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48940.2"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2021-01-20 10:43:28
2020-03-04 16:02:00
* Ausgewählte Version